-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
285 lines (242 loc) · 13.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
"""
Full definition of a GPT Language Model, all of it in this single file.
References:
1) the official GPT-2 TensorFlow implementation released by OpenAI:
https://github.com/openai/gpt-2/blob/master/src/model.py
2) huggingface/transformers PyTorch implementation:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
"""
import math
import inspect
from dataclasses import dataclass
import numpy as np
import keras_core as keras
from keras_core import Model
from keras_core import layers
from keras_core.layers import Layer
from keras_core import ops
from keras_core import activations
from keras_core import initializers
from keras_core import losses
from keras_core import optimizers
def get_param(model):
return model.count_params()
def np_multinomial(probs, num_samples=1):
return np.array([np.random.choice(len(probs), p=probs) for _ in range(num_samples)])
class Inits:
def __init__(self, config):
self.weight = initializers.RandomNormal(mean=0.0, stddev=0.02)
self.bias = initializers.Zeros()
self.scaled = initializers.RandomNormal(mean=0.0, stddev=0.02/math.sqrt(2 * config.n_layer ))
class LayerNorm(Layer):
def __init__(self, ndim, use_bias):
super().__init__()
self.normalize = layers.LayerNormalization(epsilon=1e-6)
self.weight = self.add_weight(shape=ndim,
initializer='ones',
trainable=True)
self.bias = self.add_weight(shape=ndim,
initializer='zeroes',
trainable=True) if use_bias else None
def call(self, inputs):
output = self.normalize(inputs)
if self.bias is not None:
output = output * self.weight + self.bias
return output
class CausalSelfAttention(Layer):
def __init__(self, config, weight_initializer, bias_initializer, scaled_initializer):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = layers.Dense(3 * config.n_embd, use_bias=config.bias, kernel_initializer=weight_initializer, bias_initializer=bias_initializer)
self.c_proj = layers.Dense(config.n_embd, use_bias=config.bias, kernel_initializer=scaled_initializer, bias_initializer=bias_initializer)
self.attn_dropout = layers.Dropout(config.dropout)
self.resid_dropout = layers.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
self.bias = ops.reshape(ops.triu(ops.ones((config.block_size, config.block_size)), -1),(1, 1, config.block_size, config.block_size))
def call(self, x):
B, T, C = x.shape
qkv = self.c_attn(x)
q, k, v = ops.split(qkv, indices_or_sections=3, axis=2)
k = ops.transpose(ops.reshape(k, (B, T, self.n_head, C // self.n_head)), (0, 2, 1, 3)) # (B, nh, T, hs)
q = ops.transpose(ops.reshape(q, (B, T, self.n_head, C // self.n_head)), (0, 2, 1, 3)) # (B, nh, T, hs)
v = ops.transpose(ops.reshape(v, (B, T, self.n_head, C // self.n_head)), (0, 2, 1, 3)) # (B, nh, T, hs)
att = ops.matmul(q, ops.transpose(k, axes=(0, 1, -1, -2))) * (1.0 / ops.sqrt(ops.size(k[-1])))
att = ops.where(ops.expand_dims(ops.expand_dims(self.bias[:, :, :T, :T], axis=0), axis=1) == 0, ops.cast("-inf", dtype='float32'), att)
att = ops.softmax(att, axis=-1)
att = self.attn_dropout(att)
y = ops.matmul(att, v) # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = ops.transpose(y, axes=(0, 2, 1, 3, 4, 5))
y = ops.reshape(y, (B, T, C))
y = self.c_proj(y)
return y
class MLP(Layer):
def __init__(self, config, weight_initializer, bias_initializer, scaled_initializer):
super().__init__()
self.c_fc = layers.Dense(4 * config.n_embd, use_bias=config.bias, kernel_initializer=weight_initializer, bias_initializer=bias_initializer)
self.gelu = ops.gelu
self.c_proj = layers.Dense(config.n_embd, use_bias=config.bias, kernel_initializer=scaled_initializer, bias_initializer=bias_initializer)
self.dropout = layers.Dropout(config.dropout)
def call(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class Block(Layer):
def __init__(self, config, weight_initializer, bias_initializer, scaled_initializer):
super().__init__()
self.ln_1 = LayerNorm(config.n_embd, use_bias=config.bias)
self.attn = CausalSelfAttention(config, weight_initializer=weight_initializer, bias_initializer=bias_initializer, scaled_initializer=scaled_initializer)
self.ln_2 = LayerNorm(config.n_embd, use_bias=config.bias)
self.mlp = MLP(config, weight_initializer=weight_initializer, bias_initializer=bias_initializer, scaled_initializer=scaled_initializer)
def call(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
dropout: float = 0.0
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
class Transformer(Layer):
def __init__(self, config, weight_initializer, bias_initializer, scaled_initializer):
super(Transformer, self).__init__()
self.wte = layers.Embedding(config.vocab_size, config.n_embd, embeddings_initializer=weight_initializer)
self.wpe = layers.Embedding(config.block_size, config.n_embd)
self.drop = layers.Dropout(config.dropout)
self.h = [Block(config, weight_initializer=weight_initializer, bias_initializer=bias_initializer, scaled_initializer=scaled_initializer) for _ in range(config.n_layer)]
self.ln_f = LayerNorm(config.n_embd, use_bias=config.bias)
class GPT(Model):
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.init = Inits(config)
self.config = config
self.transformer = Transformer(config, weight_initializer=self.init.weight, bias_initializer=self.init.bias, scaled_initializer=self.init.scaled)
self.lm_head = layers.Dense(config.vocab_size, use_bias=False, kernel_initializer=self.init.weight, bias_initializer=self.init.bias)
for emb in self.get_layers(layers.Embedding):
emb.set_weights(self.lm_head.get_weights()) # https://paperswithcode.com/method/weight-tying
def get_layers(self, layer_type):
layers = [layer for layer in self.layers if isinstance(layer, layer_type)]
return layers
def call(self, idx, targets=None):
b, t = idx.shape[0], idx.shape[1]
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = ops.arange(0, t) # shape (t)
# forward the GPT model itself
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.lm_head(x)
loss = losses.CategoricalCrossentropy(from_logits=True)(targets, logits)
else:
# inference-time mini-optimization: only forward the lm_head on the very last position
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
loss = None
return logits, loss
def crop_block_size(self, block_size):
# model surgery to decrease the block size if necessary
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
# but want to use a smaller block size for some smaller, simpler model
assert block_size <= self.config.block_size
self.config.block_size = block_size
self.transformer.get_layer('wpe').set_weights([ self.transformer.get_layer('wpe').get_weights()[0][:block_size] ])
for block in self.transformer.h:
if 'bias' in block.get_weights():
bias_weight = block.get_weights()['bias']
bias_weight = bias_weight[:,:,:block_size,:block_size]
block.set_weights([bias_weight])
@classmethod
def from_pretrained(model_type, override_args=None):
from transformers import TFGPT2LMHeadModel
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
override_args = override_args or {} # default to empty dict
# only dropout can be overridden see more notes below
assert all(k == 'dropout' for k in override_args)
print("Loading weights from pretrained gpt: %s" % model_type)
config_args = {
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
}[model_type]
print("forcing vocab_size=50257, block_size=1024, bias=True")
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
config_args['bias'] = True # always True for GPT model checkpoints
# we can override the dropout rate, if desired
if 'dropout' in override_args:
print(f"overriding dropout rate to {override_args['dropout']}")
config_args['dropout'] = override_args['dropout']
model_hf = TFGPT2LMHeadModel.from_pretrained(model_type)
model_hf_weights = model_hf.weights
# get model weights
model_weights = model_hf_weights
model_weights = [w for w in model_weights if 'attn.bias' not in w.name] # discard this mask / buffer, not a param
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
# this means that we have to transpose these weights when we import them
assert len(model_weights) == len(model_hf_weights), f"mismatched keys: {len(model_weights)} != {len(model_hf_weights)}"
for w in model_weights:
if any(w.name.endswith(t) for t in transposed):
# special treatment for the Conv1D weights we need to transpose
assert ops.transpose(model_hf.get_layer(w.name).get_weights()[0]).shape == w.shape
w.assign(ops.transpose(model_hf.get_layer(w.name).get_weights()[0]))
else:
assert model_hf.get_layer(w.name).get_weights()[0].shape == w.shape
w.assign(model_hf.get_layer(w.name).get_weights()[0])
return model_hf
def configure_optimizers(self, weight_decay, learning_rate, betas):
optimizer = optimizers.AdamW(learning_rate=learning_rate, beta_1=betas[0], beta_2=betas[1], weight_decay=weight_decay)
return optimizer
def estimate_mfu(self, fwdbwd_per_iter, dt):
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
# first estimate the number of flops we do per iteration.
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
N = self.get_num_params()
cfg = self.config
L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
flops_per_token = 6*N + 12*L*H*Q*T
flops_per_fwdbwd = flops_per_token * T
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
# express our flops throughput as ratio of A100 bfloat16 peak flops
flops_achieved = flops_per_iter * (1.0/dt) # per second
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
mfu = flops_achieved / flops_promised
return mfu
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
# forward the model to get the logits for the index in the sequence
logits, _ = self(idx_cond)
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = ops.top_k(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = activations.softmax(logits, dim=-1)
# sample from the distribution
idx_next = np_multinomial(probs, num_samples=1)
# append sampled index to the running sequence and continue
idx = ops.concatenate((idx, idx_next), dim=1)
return idx