Skip to content

Latest commit

 

History

History
102 lines (62 loc) · 6.73 KB

README.md

File metadata and controls

102 lines (62 loc) · 6.73 KB

Scalable and Interpretable Semantic Change Detection

Official repository for paper "Scalable and Interpretable Semantic Change Detection" published in Proceedings of NAACL 2021. Published results were produced in Python 3 programming environment on Linux Mint 18 Cinnamon operating system. Instructions for installation assume the usage of PyPI package manager.

Installation, documentation

Install dependencies if needed: pip install -r requirements.txt
You also need to download 'tokenizers/punkt/english.pickle' using nltk library.

To reproduce the results published in the paper run the code in the command line using following commands:

Download all the required data:

Prepare the data :

Generate COHA language model train and test sets and preprocess the corpus:

python build_coha_corpus.py  --input_folders pathToCOHACorpusSlicesSeparatedBy';' --output_files pathToPreprocessedTxtFilesOnePerEachSliceSeparatedBy';' --lm_output_train pathToOutputLanguageModelTrainFile --lm_output_test pathToOutputLanguageModelTestFile

Don't forget to put quotes around --input_folders argument, or ';' will be interpreted as a new command. :)

Generate SEMEVAL language model train and test sets for each language and preprocess the corpora:

python build_semeval_lm_train_test.py  --corpus_paths pathToCorpusSlicesSeparatedBy';' --target_path pathToSemEvalTargetFile --language language --lm_train_test_folder pathToOutputFolder
python build_semeval_corpora.py  --corpus_paths pathToCorpusSlicesSeparatedBy';' --target_path pathToSemEvalTargetFile --language language --output_folder pathToOutputFolder

Generate DURel language model train and test sets (DURel corpus does not require any preprocessing):

python build_durel_corpus.py  --input_files pathToCorpusSlicesSeparatedBy';' --lm_output_train pathToOutputLanguageModelTrainFile --lm_output_test pathToOutputLanguageModelTestFile

Generate Aylien language model train and test sets and preprocess the corpus:

python build_aylien_corpus.py  --input_path pathToAylienJSONFile --output_folder pathToOutputFolderWithTxTFilesForEachSlice --lm_output_train pathToOutputLanguageModelTrainFile --lm_output_test pathToOutputLanguageModelTestFile

Fine-tune language model:

Fine-tune BERT model for 5 epochs:

python fine-tune_BERT.py --train_data_file pathToLMTrainSet --output_dir pathToOutputModelDir --eval_data_file pathToLMTestSet --model_name_or_path modelForSpecificLanguage --mlm --do_train --do_eval --evaluate_during_training

For '--model_name_or_path' parameter, see the paper for info about which models we use for each language. For SEMEVAL and DURel, the sentences in the corpora are shuffled, therefore the context is limited to sentences. For this reason USE AN ADDITIONAL '--line_by_line' flag when training on this corpora.

Extract BERT embeddings:

Extract embeddings from the preprocessed corpus in .txt for one of the corpora from the SemEval semantic change competiton:

python get_embeddings_scalable_semeval.py --corpus_paths pathToPreprocessedCorpusSlicesSeparatedBy';' --corpus_slices nameOfCorpusSlicesSeparatedBy';' --target_path pathToSemEvalTargetFile --language corpusLanguage --path_to_fine_tuned_model pathToFineTunedModel --embeddings_path pathToOutputEmbeddingFile

Extract embeddings from the preprocessed corpus in .txt for COHA, DURel or Aylien corpus:

python get_embeddings_scalable.py --corpus_paths pathToPreprocessedCorpusSlicesSeparatedBy';' --corpus_slices nameOfCorpusSlicesSeparatedBy';' --target_path pathToTargetFile --task chooseBetween'coha','durel','aylien' --path_to_fine_tuned_model pathToFineTunedModel --embeddings_path pathToOutputEmbeddingFile

This creates a pickled file containing all contextual embeddings for all target words.

Get results:

Conduct clustering and measure semantic shift with various methods:

python measure_semantic_shift.py --corpus_slices nameOfCorpusSlicesSeparatedBy';' --embeddings_path pathToInputEmbeddingFile --results_dir_path pathToOutputResultsDir --method JSD_or_WD

This script takes the pickled embedding file as an input and creates a csv file containing semantic change scores for each target word (from the full vocabulary or from a pre-defined list) using either Wasserstein distance or Jensen-Shannon divergence. If --get_additional_info flag is used, the script will generate additional files that are used for interpretation of the change, a file containing cluster labels for each embedding , file containing cluster centroids and a file containing context (sentence) mapped to each embedding. Note that the --get_additional_info flag can only be used if less than 100 words need to be interpreted. If your embeddings contain more than 100 words use the --define_words_to_interpret 'word1;word2;word3' flag, with which you can manually define words for which you want additional info.
To compare the output semantic change scores to the gold standard scores use the following command:

python evaluate.py --task chooseBetween'coha','durel','semeval' --gold_standard_path pathToGoldStandardScores --results_path pathToCSVfileWithResults --corpus_slices nameOfCorpusSlicesSeparatedBy';'

Extract keywords for each cluster and plot clusters distributions for interpretation:

python interpretation.py  --target_word targetWord --corpus_slices nameOfCorpusSlicesSeparatedBy';' --path_to_labels pathToFileWithClusterLabels --path_to_sentences pathToFileWithClusterSentences --results_dir_path pathToInterpretationResultsDir

This script requires a specific target word for which embeddings were generated as an input. It extracts keywords for each cluster, and plots the cluster distribution for each corpus slice.

If something is unclear, check the default arguments for each script. If you still can't make it work, feel free to contact us :).