-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_semeval_corpora.py
75 lines (64 loc) · 2.58 KB
/
build_semeval_corpora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import random
import argparse
import os
import sys
def filterLine(line, lang, targets):
if lang=='latin':
line = ''.join([i for i in line if not (i.isdigit() or i=='#')])
elif lang=='english':
wrong_pos = False
correct_pos = False
for target in targets:
line_l = line.split()
if target in line:
line = line.replace(target, target[:-3])
correct_pos = True
if target[:-3] in line_l:
wrong_pos = True
if correct_pos:
return line
elif wrong_pos:
return None
return line
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--corpus_paths", default='data/english/english_1.txt;data/english/english_2.txt', type=str,
help="Paths to all corpus time slices separated by ';'.")
parser.add_argument("--target_path", default='data/english/targets.txt', type=str,
help="Path to target files")
parser.add_argument("--language", default='english', const='all', nargs='?',
help="Choose a language", choices=['english', 'latin', 'swedish', 'german'])
parser.add_argument("--output_folder", default='data/english',
help="Path to folder that contains output preprocessed files, one per slice")
args = parser.parse_args()
lang = args.language
languages = ['english', 'latin', 'swedish', 'german']
if lang not in languages:
print("Language not valid, valid choices are: ", ", ".join(languages))
sys.exit()
target_path = args.target_path
corpora = args.corpus_paths.split(';')
output_folder = args.output_folder
data = []
outputs = []
for i, corpus in enumerate(corpora):
output = open(os.path.join(output_folder, lang + '_preprocessed_' + str(i + 1) + '.txt'), 'w', encoding='utf8')
outputs.append(output)
if lang == 'english':
targets = []
with open(target_path, 'r', encoding='utf8') as f:
for line in f:
target = line.strip()
if len(target) > 0 :
targets.append(target)
else:
targets = None
for i, corpus in enumerate(corpora):
with open(corpus, 'r', encoding='utf8') as f:
for line in f:
line = filterLine(line, lang, targets)
if line is not None:
outputs[i].write(line)
for output in outputs:
output.close()
print('Done, preprocessed files written to folder', output_folder)