|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 2, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "from typing import Optional\n", |
| 10 | + "\n", |
| 11 | + "import jax\n", |
| 12 | + "import jax.numpy as jnp\n", |
| 13 | + "\n", |
| 14 | + "from evox import Algorithm, dataclass, pytree_field, problems, workflows, monitors, use_state\n", |
| 15 | + "from evox.core.distributed import ShardingType\n", |
| 16 | + "from evox.utils import *" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "markdown", |
| 21 | + "metadata": {}, |
| 22 | + "source": [ |
| 23 | + "In this example, we consider the following simple setup:\n", |
| 24 | + "```\n", |
| 25 | + " Node1\n", |
| 26 | + " |\n", |
| 27 | + " +----+----+\n", |
| 28 | + " | | |\n", |
| 29 | + "GPU GPU GPU\n", |
| 30 | + "```\n", |
| 31 | + "Where we only have one node with multiple GPUs. The communication between the GPUs is done through the PCIe or NVLink.\n", |
| 32 | + "When running in a distributed setup, we need to make decisions on how to place the data on these GPUs." |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": 3, |
| 38 | + "metadata": {}, |
| 39 | + "outputs": [], |
| 40 | + "source": [ |
| 41 | + "# The only changes:\n", |
| 42 | + "# Add the sharding metadata\n", |
| 43 | + "@dataclass\n", |
| 44 | + "class SpecialPSOState:\n", |
| 45 | + " population: jax.Array = pytree_field(sharding=ShardingType.SHARED_FIRST_DIM)\n", |
| 46 | + " velocity: jax.Array = pytree_field(sharding=ShardingType.SHARED_FIRST_DIM)\n", |
| 47 | + " fitness: jax.Array = pytree_field(sharding=ShardingType.SHARED_FIRST_DIM)\n", |
| 48 | + " local_best_location: jax.Array = pytree_field(sharding=ShardingType.SHARED_FIRST_DIM)\n", |
| 49 | + " local_best_fitness: jax.Array = pytree_field(sharding=ShardingType.SHARED_FIRST_DIM)\n", |
| 50 | + " global_best_location: jax.Array\n", |
| 51 | + " global_best_fitness: jax.Array\n", |
| 52 | + " key: jax.random.PRNGKey\n", |
| 53 | + "\n", |
| 54 | + "\n", |
| 55 | + "@dataclass\n", |
| 56 | + "class PSO(Algorithm):\n", |
| 57 | + " dim: jax.Array = pytree_field(static=True, init=False)\n", |
| 58 | + " lb: jax.Array\n", |
| 59 | + " ub: jax.Array\n", |
| 60 | + " pop_size: jax.Array = pytree_field(static=True)\n", |
| 61 | + " w: jax.Array = pytree_field(default=0.6)\n", |
| 62 | + " phi_p: jax.Array = pytree_field(default=2.5)\n", |
| 63 | + " phi_g: jax.Array = pytree_field(default=0.8)\n", |
| 64 | + " mean: Optional[jax.Array] = pytree_field(default=None)\n", |
| 65 | + " stdev: Optional[jax.Array] = pytree_field(default=None)\n", |
| 66 | + " bound_method: str = pytree_field(static=True, default=\"clip\")\n", |
| 67 | + "\n", |
| 68 | + " def __post_init__(self):\n", |
| 69 | + " self.set_frozen_attr(\"dim\", self.lb.shape[0])\n", |
| 70 | + "\n", |
| 71 | + " def setup(self, key):\n", |
| 72 | + " state_key, init_pop_key, init_v_key = jax.random.split(key, 3)\n", |
| 73 | + " if self.mean is not None and self.stdev is not None:\n", |
| 74 | + " population = self.stdev * jax.random.normal(\n", |
| 75 | + " init_pop_key, shape=(self.pop_size, self.dim)\n", |
| 76 | + " )\n", |
| 77 | + " population = jnp.clip(population, self.lb, self.ub)\n", |
| 78 | + " velocity = self.stdev * jax.random.normal(\n", |
| 79 | + " init_v_key, shape=(self.pop_size, self.dim)\n", |
| 80 | + " )\n", |
| 81 | + " else:\n", |
| 82 | + " length = self.ub - self.lb\n", |
| 83 | + " population = jax.random.uniform(\n", |
| 84 | + " init_pop_key, shape=(self.pop_size, self.dim)\n", |
| 85 | + " )\n", |
| 86 | + " population = population * length + self.lb\n", |
| 87 | + " velocity = jax.random.uniform(init_v_key, shape=(self.pop_size, self.dim))\n", |
| 88 | + " velocity = velocity * length * 2 - length\n", |
| 89 | + "\n", |
| 90 | + " return SpecialPSOState(\n", |
| 91 | + " population=population,\n", |
| 92 | + " velocity=velocity,\n", |
| 93 | + " fitness=jnp.full((self.pop_size,), jnp.inf),\n", |
| 94 | + " local_best_location=population,\n", |
| 95 | + " local_best_fitness=jnp.full((self.pop_size,), jnp.inf),\n", |
| 96 | + " global_best_location=population[0],\n", |
| 97 | + " global_best_fitness=jnp.array([jnp.inf]),\n", |
| 98 | + " key=state_key,\n", |
| 99 | + " )\n", |
| 100 | + "\n", |
| 101 | + " def ask(self, state):\n", |
| 102 | + " return state.population, state\n", |
| 103 | + "\n", |
| 104 | + " def tell(self, state, fitness):\n", |
| 105 | + " key, rg_key, rp_key = jax.random.split(state.key, 3)\n", |
| 106 | + "\n", |
| 107 | + " rg = jax.random.uniform(rg_key, shape=(self.pop_size, self.dim))\n", |
| 108 | + " rp = jax.random.uniform(rp_key, shape=(self.pop_size, self.dim))\n", |
| 109 | + "\n", |
| 110 | + " compare = state.local_best_fitness > fitness\n", |
| 111 | + " local_best_location = jnp.where(\n", |
| 112 | + " compare[:, jnp.newaxis], state.population, state.local_best_location\n", |
| 113 | + " )\n", |
| 114 | + " local_best_fitness = jnp.minimum(state.local_best_fitness, fitness)\n", |
| 115 | + "\n", |
| 116 | + " global_best_location, global_best_fitness = min_by(\n", |
| 117 | + " [state.global_best_location[jnp.newaxis, :], state.population],\n", |
| 118 | + " [state.global_best_fitness, fitness],\n", |
| 119 | + " )\n", |
| 120 | + "\n", |
| 121 | + " global_best_fitness = jnp.atleast_1d(global_best_fitness)\n", |
| 122 | + "\n", |
| 123 | + " velocity = (\n", |
| 124 | + " self.w * state.velocity\n", |
| 125 | + " + self.phi_p * rp * (local_best_location - state.population)\n", |
| 126 | + " + self.phi_g * rg * (global_best_location - state.population)\n", |
| 127 | + " )\n", |
| 128 | + " population = state.population + velocity\n", |
| 129 | + "\n", |
| 130 | + " if self.bound_method == \"clip\":\n", |
| 131 | + " population = jnp.clip(population, self.lb, self.ub)\n", |
| 132 | + " velocity = jnp.clip(velocity, self.lb, self.ub)\n", |
| 133 | + " elif self.bound_method == \"reflect\":\n", |
| 134 | + " lower_bound_violation = population < self.lb\n", |
| 135 | + " upper_bound_violation = population > self.ub\n", |
| 136 | + "\n", |
| 137 | + " population = jnp.where(\n", |
| 138 | + " lower_bound_violation, 2 * self.lb - population, population\n", |
| 139 | + " )\n", |
| 140 | + " population = jnp.where(\n", |
| 141 | + " upper_bound_violation, 2 * self.ub - population, population\n", |
| 142 | + " )\n", |
| 143 | + " velocity = jnp.where(\n", |
| 144 | + " lower_bound_violation | upper_bound_violation, -velocity, velocity\n", |
| 145 | + " )\n", |
| 146 | + " # enforce the bounds in case the reflected particles are still out of bounds\n", |
| 147 | + " population = jnp.clip(population, self.lb, self.ub)\n", |
| 148 | + " velocity = jnp.clip(velocity, self.lb, self.ub)\n", |
| 149 | + "\n", |
| 150 | + " return state.replace(\n", |
| 151 | + " population=population,\n", |
| 152 | + " velocity=velocity,\n", |
| 153 | + " local_best_location=local_best_location,\n", |
| 154 | + " local_best_fitness=local_best_fitness,\n", |
| 155 | + " global_best_location=global_best_location,\n", |
| 156 | + " global_best_fitness=global_best_fitness,\n", |
| 157 | + " key=key,\n", |
| 158 | + " )\n" |
| 159 | + ] |
| 160 | + }, |
| 161 | + { |
| 162 | + "cell_type": "code", |
| 163 | + "execution_count": 4, |
| 164 | + "metadata": {}, |
| 165 | + "outputs": [], |
| 166 | + "source": [ |
| 167 | + "pso = PSO(\n", |
| 168 | + " lb=jnp.full(shape=(2,), fill_value=-32),\n", |
| 169 | + " ub=jnp.full(shape=(2,), fill_value=32),\n", |
| 170 | + " pop_size=100,\n", |
| 171 | + ")\n", |
| 172 | + "ackley = problems.numerical.Ackley()" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "code", |
| 177 | + "execution_count": 5, |
| 178 | + "metadata": {}, |
| 179 | + "outputs": [], |
| 180 | + "source": [ |
| 181 | + "monitor = monitors.EvalMonitor()\n", |
| 182 | + "workflow = workflows.StdWorkflow(\n", |
| 183 | + " pso,\n", |
| 184 | + " ackley,\n", |
| 185 | + " monitors=[monitor],\n", |
| 186 | + ")\n", |
| 187 | + "key = jax.random.PRNGKey(42)\n", |
| 188 | + "state = workflow.init(key)\n", |
| 189 | + "state = workflow.enable_multi_devices(state)" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "code", |
| 194 | + "execution_count": 6, |
| 195 | + "metadata": {}, |
| 196 | + "outputs": [ |
| 197 | + { |
| 198 | + "data": { |
| 199 | + "text/plain": [ |
| 200 | + "State(StdWorkflowState(generation=NamedSharding(mesh=Mesh('POP': 2), spec=PartitionSpec(), memory_kind=device), first_step=True), {'algorithm': State(SpecialPSOState(population=NamedSharding(mesh=Mesh('POP': 2), spec=PartitionSpec('POP',), memory_kind=device), velocity=NamedSharding(mesh=Mesh('POP': 2), spec=PartitionSpec('POP',), memory_kind=device), fitness=NamedSharding(mesh=Mesh('POP': 2), spec=PartitionSpec('POP',), memory_kind=device), local_best_location=NamedSharding(mesh=Mesh('POP': 2), spec=PartitionSpec('POP',), memory_kind=device), local_best_fitness=NamedSharding(mesh=Mesh('POP': 2), spec=PartitionSpec('POP',), memory_kind=device), global_best_location=NamedSharding(mesh=Mesh('POP': 2), spec=PartitionSpec(), memory_kind=device), global_best_fitness=NamedSharding(mesh=Mesh('POP': 2), spec=PartitionSpec(), memory_kind=device), key=NamedSharding(mesh=Mesh('POP': 2), spec=PartitionSpec(), memory_kind=device)), {}),'monitors0': State(EvalMonitorState(first_step=True, latest_solution=None, latest_fitness=None, topk_solutions=None, topk_fitness=None), {}),'problem': State({}, {})})" |
| 201 | + ] |
| 202 | + }, |
| 203 | + "execution_count": 6, |
| 204 | + "metadata": {}, |
| 205 | + "output_type": "execute_result" |
| 206 | + } |
| 207 | + ], |
| 208 | + "source": [ |
| 209 | + "# check if the state is correctly sharded\n", |
| 210 | + "jax.tree.map(lambda x: x.sharding, state)" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "code", |
| 215 | + "execution_count": 7, |
| 216 | + "metadata": {}, |
| 217 | + "outputs": [], |
| 218 | + "source": [ |
| 219 | + "# run the workflow for 50 steps\n", |
| 220 | + "for i in range(50):\n", |
| 221 | + " state = workflow.step(state)" |
| 222 | + ] |
| 223 | + }, |
| 224 | + { |
| 225 | + "cell_type": "code", |
| 226 | + "execution_count": 8, |
| 227 | + "metadata": {}, |
| 228 | + "outputs": [], |
| 229 | + "source": [ |
| 230 | + "best_solution, _state = use_state(monitor.get_best_solution)(state)" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "cell_type": "code", |
| 235 | + "execution_count": 9, |
| 236 | + "metadata": {}, |
| 237 | + "outputs": [ |
| 238 | + { |
| 239 | + "name": "stdout", |
| 240 | + "output_type": "stream", |
| 241 | + "text": [ |
| 242 | + "[ 0.0002041 -0.00019218]\n" |
| 243 | + ] |
| 244 | + } |
| 245 | + ], |
| 246 | + "source": [ |
| 247 | + "print(best_solution)" |
| 248 | + ] |
| 249 | + } |
| 250 | + ], |
| 251 | + "metadata": { |
| 252 | + "kernelspec": { |
| 253 | + "display_name": "venv", |
| 254 | + "language": "python", |
| 255 | + "name": "python3" |
| 256 | + }, |
| 257 | + "language_info": { |
| 258 | + "codemirror_mode": { |
| 259 | + "name": "ipython", |
| 260 | + "version": 3 |
| 261 | + }, |
| 262 | + "file_extension": ".py", |
| 263 | + "mimetype": "text/x-python", |
| 264 | + "name": "python", |
| 265 | + "nbconvert_exporter": "python", |
| 266 | + "pygments_lexer": "ipython3", |
| 267 | + "version": "3.11.2" |
| 268 | + } |
| 269 | + }, |
| 270 | + "nbformat": 4, |
| 271 | + "nbformat_minor": 2 |
| 272 | +} |
0 commit comments