Skip to content

Commit 3ee6998

Browse files
committed
🐛 Fix description
1 parent c8768b9 commit 3ee6998

File tree

1 file changed

+2
-93
lines changed

1 file changed

+2
-93
lines changed

index.html

+2-93
Original file line numberDiff line numberDiff line change
@@ -7,10 +7,10 @@
77
<!-- Replace the content tag with appropriate information -->
88
<meta name="description" content="Towards Understanding Why Label Smoothing Degrades Selective Classification and How to Fix It. Accepted to ICLR 2025.">
99
<meta property="og:title" content="Towards Understanding Why Label Smoothing Degrades Selective Classification and How to Fix It" />
10-
<meta property="og:description" content="Don't forget about majority voting when you evaluate your TTA method :)" />
10+
<meta property="og:description" content="A lead to explain the disastrous effects of label-smoothing on the selective classification abilities of your model." />
1111
<meta property="og:url" content="https://ensta-u2is-ai.github.io/Understanding-Label-smoothing-Selective-classification/" />
1212
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X630-->
13-
<meta property="og:image" content="static/images/teaser.png" />
13+
<!-- <meta property="og:image" content="static/images/teaser.png" /> -->
1414
<meta property="og:image:width" content="1200" />
1515
<meta property="og:image:height" content="630" />
1616

@@ -211,97 +211,6 @@ <h2 class="title is-3">Abstract</h2>
211211
</section>
212212
<!-- End paper abstract -->
213213

214-
<!-- <section class="hero teaser">
215-
<div class="container is-max-desktop">
216-
<div class="hero-body has-text-centered">
217-
<h2 class="title is-3">Takeaways</h2>
218-
<div style="display: flex; justify-content: center;">
219-
<img src="static/images/teaser.png" alt="Banner Image" height="100%" width="75%" style="margin-bottom: 55px;">
220-
</div> -->
221-
<!-- <h2 class="subtitle has-text-justified">
222-
<br><b>Background on Marginal Entropy Minimization.</b> Test-Time Adaptation aims at adapting a model to a single image at inference time.
223-
Ideally, no form of prior or external knowledge should be employed in doing so.
224-
An established paradigm for TTA is <b>M</b>arginal <b>E</b>ntropy <b>M</b>inimization, which works by augmenting the image N times,
225-
computing the so-called "marginal probability distribution" (i.e., the average probability distribution over the views), and
226-
minimizing the entropy of this distribution.<br><br>
227-
228-
<b>Findings.</b> We find that the argmax of the marginal distribution is invariant to <b>MEM</b> most of the time (and can be guaranteed to be so under certain conditions),
229-
and that this marginal distribution itself is reasonably better than standard inference, under the assumption that the model is well-calibrated.
230-
<br><br>Empirical evidence for these findings is shown below (left: invariance, right: ensemble verification).
231-
</h2>
232-
<img src="static/images/I_binned_ent_vs_invariance.png" alt="Banner Image" style="height: 18em; width: auto; padding-inline: 2rem;">
233-
<img src="static/images/ensemble_verification_over_datasets.png" alt="Banner Image" style="height: 18em; width: auto; padding-inline: 2rem">
234-
235-
<h2 class="subtitle has-text-justified">
236-
<b>Problem.</b> Calibration is missing on augmented data, but we largely observe that CLIP models are still pretty accurate in this regime.
237-
For example, here is what the reliability plots of CLIP-ViT-B-16 look like.
238-
</h2>
239-
<img src="static/images/rpI.png" alt="Banner Image" style="height: 20em; width: auto;">
240-
241-
<h2 class="subtitle has-text-justified">
242-
<b>TTA with "zero" temperature</b> is a direct consequence of these observations: since confidence information is unreliable,
243-
simply compute the marginal distribution <i>after</i> the temperature has been zeroed-out! By only adapting this parameter, we are effectively marginalizing
244-
across one-hot encoded vectors... does this remind you of something?
245-
</h2>
246-
247-
</div>
248-
</div>
249-
</section> -->
250-
<!-- End paper abstract -->
251-
252-
<!-- Method overview-->
253-
<!-- <section class="section hero is-light">
254-
<div class="container is-max-desktop">
255-
<h2 class="title is-3 has-text-centered">Implementation</h2>
256-
<h2 class="subtitle has-text-centered" style="padding: 0px; margin: 0px">ZERO is implemented in a few lines of code. You can find a PyTorch-like implementation right here :)</h2>
257-
<pre class="has-text-justified" style="width: 80rem; overflow-x: auto; padding: 0px; margin: 0px">
258-
<code class="python" style="padding: 0px; margin: 0px">
259-
def zero(image, z_txt, N, gamma, temp):
260-
"""
261-
:param z_txt: pre-computed text embeddings (C,hdim)
262-
:param temp: model’s original temperature
263-
:param augment: takes (C,H,W) and returns (N,C,H,W)
264-
:param gamma: filtering percentile (e.g., 0.3)
265-
"""
266-
views = augment(image, num_views=N) # generate augmented views
267-
l = model.image_encoder(views) @ z_txt.t() # predict (unscaled logits)
268-
l_filt = confidence_filter(l, temp, top=gamma) # retain most confident preds
269-
zero_temp = torch.finfo(l_filt.dtype).eps # zero temperature
270-
p_bar = (l_filt / zero_temp).softmax(dim=1).sum(dim=0) # marginalize
271-
return p_bar.argmax()
272-
</code>
273-
</pre>
274-
</div>
275-
</section> -->
276-
<!-- End method overview -->
277-
278-
<!-- Results -->
279-
<!-- <section class="hero">
280-
<div class="container is-max-desktop">
281-
<div class="hero-body has-text-centered">
282-
<h2 class="title is-3">Results</h2>
283-
<h2 class="subtitle has-text-justified">
284-
<br>We evaluate ZERO on the standard TTA benchmarks, including robustness to Natural Distribution Shifts and Fine-grained Classification.
285-
The results below report CLIP-ViT-B-16 from OpenAI, and compare ZERO to TPT, PromptAlign and RLCF.
286-
</h2>
287-
288-
<p><b>Robustness to Natural Distribution Shifts</b></p>
289-
<img src="static/images/nds.png" alt="Banner Image" style="height: auto; width: 100em;">
290-
<br><br>
291-
292-
<p><b>Fine-grained Classification</b></p>
293-
<img src="static/images/fg.png" alt="Banner Image" style="height: auto; width: 100em;">
294-
295-
<h2 class="subtitle has-text-justified"><br>
296-
We find that ZERO, in all its simplicity, establishes a new <b>state-of-the-art</b> in TTA!
297-
Don't forget about majority voting when you evaluate your TTA method!! :)
298-
</h2>
299-
300-
</div>
301-
</div>
302-
</section> -->
303-
<!-- Results -->
304-
305214
<!-- Acknowledgements -->
306215
<section class="hero is-light">
307216
<div class="container is-max-desktop">

0 commit comments

Comments
 (0)