-
Notifications
You must be signed in to change notification settings - Fork 20
/
MT.Rmd
120 lines (90 loc) · 3.72 KB
/
MT.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
title: "Montana Early Voting Statistics"
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
library(knitr)
library(kableExtra)
library(scales)
library(DT)
library(highcharter)
state_stats <- read_csv("D:/DropBox/Dropbox/Mail_Ballots_2020/markdown/2020G_Early_Vote.csv")
MT_stats <- read_csv("D:/DropBox/Dropbox/Mail_Ballots_2020/markdown/2020G_Early_Vote_MT.csv")
# Setup
party_shell <- data.frame(Party=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
party_shell[1,1] <- "Democrats"
party_shell[2,1] <- "Republicans"
party_shell[3,1] <- "Minor"
party_shell[4,1] <- "No Party Affiliation"
party_shell[5,1] <- "TOTAL"
race_shell <- data.frame(Race=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
race_shell[1,1] <- "Non-Hispanic White"
race_shell[2,1] <- "Non-Hispanic Black"
race_shell[3,1] <- "Hispanic"
race_shell[4,1] <- "Non-Hispanic Asian American"
race_shell[5,1] <- "Non-Hispanic Native American"
race_shell[6,1] <- "Other/Multiple/Unknown"
race_shell[7,1] <- "TOTAL"
gender_shell <- data.frame(Gender=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
gender_shell[1,1] <- "Female"
gender_shell[2,1] <- "Male"
gender_shell[3,1] <- "Unknown"
gender_shell[4,1] <- "TOTAL"
age_shell <- data.frame(Age=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
age_shell[1,1] <- "18 to 24"
age_shell[2,1] <- "25 to 34"
age_shell[3,1] <- "35 to 44"
age_shell[4,1] <- "45 to 54"
age_shell[5,1] <- "55 to 64"
age_shell[6,1] <- "65 and up"
age_shell[7,1] <- "TOTAL"
# Montana
MT_req_send_tot <- data.frame(Total=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
MT_req_send_tot[1,1] <- "TOTAL"
MT_req_send_tot[1,2] <- sum(state_stats[27,5])
MT_req_send_tot$Percent <- 100.0
MT_stats <- mutate(MT_stats, Pct.Return = Mail.Rtn.Tot/Mail.Req.Tot)
MT_stats_returns <- select(MT_stats, County.Name, Mail.Rtn.Tot, Mail.Req.Tot, Pct.Return)
```
## {.tabset}
Last Report: `r state_stats[27,9]`
Source: `r state_stats[27,2]`
### Returned Mail Ballots
Mail Ballots Returned: **`r format(as.numeric(state_stats[27,6]), big.mark =",")`**
``` {r echo = FALSE}
MT_2020g_map_data <- MT_stats
MT_2020g_map_data$fips <- as.character(MT_2020g_map_data$fips)
MT_2020g_map_data <- mutate(MT_2020g_map_data, percent = round(100*Pct.Return, digits = 1))
mapfile <- download_map_data("countries/us/us-mt-all.js")
mapdata <- get_data_from_map(mapfile)
mapdata$row <- as.integer(rownames(mapdata))
MT_2020g_map_data <- left_join(MT_2020g_map_data, mapdata, by = "fips")
MT_2020g_map_data <- arrange(MT_2020g_map_data, row)
hcmap(map = "countries/us/us-mt-all", data = MT_2020g_map_data,
value = "percent", name = "Percent Returned", joinBy = "fips") %>%
hc_title(text ="Mail Ballot Return Rates") %>%
hc_subtitle(text = "County plots may not be shaded using the same scale")
```
``` {r echo = FALSE}
datatable(MT_stats_returns, colnames = c("County", "Mail Ballots Returned", "Mail Ballots Sent", "Percent Returned"), rownames = F) %>%
formatPercentage('Pct.Return', 1) %>%
formatRound(c('Mail.Rtn.Tot','Mail.Req.Tot'), 0, mark = ",")
```
### Mail Ballots Sent
Mail Ballots Sent: **`r format(as.numeric(state_stats[27,5]), big.mark =",")`**