-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDE1_TOP.v.bak
1462 lines (1126 loc) · 49.1 KB
/
DE1_TOP.v.bak
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
module DE1_TOP
(
//////////////////////// Clock Input ////////////////////////
input [1:0] CLOCK_24, // 24 MHz
input [1:0] CLOCK_27, // 27 MHz
input CLOCK_50, // 50 MHz
input EXT_CLOCK, // External Clock
//////////////////////// Push Button ////////////////////////
input [3:0] KEY, // Pushbutton[3:0]
//////////////////////// DPDT Switch ////////////////////////
input [9:0] SW, // Toggle Switch[9:0]
//////////////////////// 7-SEG Display ////////////////////////
output [6:0] HEX0, // Seven Segment Digit 0
output [6:0] HEX1, // Seven Segment Digit 1
output [6:0] HEX2, // Seven Segment Digit 2
output [6:0] HEX3, // Seven Segment Digit 3
//////////////////////////// LED ////////////////////////////
output [7:0] LEDG, // LED Green[7:0]
output [9:0] LEDR, // LED Red[9:0]
//////////////////////////// UART ////////////////////////////
output UART_TXD, // UART Transmitter
input UART_RXD, // UART Receiver
/////////////////////// SDRAM Interface ////////////////////////
inout [15:0] DRAM_DQ, // SDRAM Data bus 16 Bits
output [11:0] DRAM_ADDR, // SDRAM Address bus 12 Bits
output DRAM_LDQM, // SDRAM Low-byte Data Mask
output DRAM_UDQM, // SDRAM High-byte Data Mask
output DRAM_WE_N, // SDRAM Write Enable
output DRAM_CAS_N, // SDRAM Column Address Strobe
output DRAM_RAS_N, // SDRAM Row Address Strobe
output DRAM_CS_N, // SDRAM Chip Select
output DRAM_BA_0, // SDRAM Bank Address 0
output DRAM_BA_1, // SDRAM Bank Address 0
output DRAM_CLK, // SDRAM Clock
output DRAM_CKE, // SDRAM Clock Enable
//////////////////////// Flash Interface ////////////////////////
inout [7:0] FL_DQ, // FLASH Data bus 8 Bits
output [21:0] FL_ADDR, // FLASH Address bus 22 Bits
output FL_WE_N, // FLASH Write Enable
output FL_RST_N, // FLASH Reset
output FL_OE_N, // FLASH Output Enable
output FL_CE_N, // FLASH Chip Enable
//////////////////////// SRAM Interface ////////////////////////
inout [15:0] SRAM_DQ, // SRAM Data bus 16 Bits
output [17:0] SRAM_ADDR, // SRAM Address bus 18 Bits
output SRAM_UB_N, // SRAM High-byte Data Mask
output SRAM_LB_N, // SRAM Low-byte Data Mask
output SRAM_WE_N, // SRAM Write Enable
output SRAM_CE_N, // SRAM Chip Enable
output SRAM_OE_N, // SRAM Output Enable
//////////////////// SD Card Interface ////////////////////////
inout SD_DAT, // SD Card Data
inout SD_DAT3, // SD Card Data 3
inout SD_CMD, // SD Card Command Signal
output SD_CLK, // SD Card Clock
//////////////////////// I2C ////////////////////////////////
inout I2C_SDAT, // I2C Data
output I2C_SCLK, // I2C Clock
//////////////////////// PS2 ////////////////////////////////
input PS2_DAT, // PS2 Data
input PS2_CLK, // PS2 Clock
//////////////////// USB JTAG link ////////////////////////////
input TDI, // CPLD -> FPGA (data in)
input TCK, // CPLD -> FPGA (clk)
input TCS, // CPLD -> FPGA (CS)
output TDO, // FPGA -> CPLD (data out)
//////////////////////// VGA ////////////////////////////
output VGA_HS, // VGA H_SYNC
output VGA_VS, // VGA V_SYNC
output [3:0] VGA_R, // VGA Red[3:0]
output [3:0] VGA_G, // VGA Green[3:0]
output [3:0] VGA_B, // VGA Blue[3:0]
//////////////////// Audio CODEC ////////////////////////////
inout AUD_ADCLRCK, // Audio CODEC ADC LR Clock
input AUD_ADCDAT, // Audio CODEC ADC Data
inout AUD_DACLRCK, // Audio CODEC DAC LR Clock
output AUD_DACDAT, // Audio CODEC DAC Data
inout AUD_BCLK, // Audio CODEC Bit-Stream Clock
output AUD_XCK, // Audio CODEC Chip Clock
//////////////////////// GPIO ////////////////////////////////
inout [35:0] GPIO_0, // GPIO Connection 0
inout [35:0] GPIO_1 // GPIO Connection 1
);
/*
r4300_interface r4300_interface_inst
(
.RESET_N( KEY[0] ) , // input RESET_N
.SYS_CLK( CLK_DIV[0] ) , // input SYS_CLK
.COLDRESET_N( GPIO_1[3] ) ,// output COLDRESET_N
.MCLOCK( GPIO_0[16] ) , // output MCLOCK
.SYSAD( {GPIO_1[20],GPIO_1[19],GPIO_1[15],GPIO_1[14],GPIO_1[13],GPIO_1[10],GPIO_1[9],GPIO_0[1],
GPIO_0[10],GPIO_0[3], GPIO_0[4], GPIO_0[5], GPIO_0[6], GPIO_0[7], GPIO_0[8],GPIO_0[9],
GPIO_0[12],GPIO_0[11],GPIO_0[21],GPIO_0[13],GPIO_0[19],GPIO_0[15],GPIO_1[30],GPIO_1[29],
GPIO_1[28],GPIO_1[27],GPIO_1[26],GPIO_1[25],GPIO_1[24],GPIO_1[23],GPIO_1[22],GPIO_1[21]} ) , // inout [31:0] SYSAD
.SYSCMD( {GPIO_1[1],GPIO_1[4],GPIO_1[5],GPIO_1[7],GPIO_1[8]} ) , // inout [4:0] SYSCMD
.PVALID_N( GPIO_1[2] ) , // input PVALID_N
.EVALID_N( GPIO_1[18] ) , // output EVALID_N
.EOK_N( GPIO_1[16] ) , // output EOK_N
.NMI_N( GPIO_1[11] ) , // output NMI_N
.INT0_N( GPIO_0[17] ) , // output INT0_N
.INT1_N( GPIO_1[32] ) , // output INT1_N
.INT2_N( GPIO_1[12] ) , // output INT2_N
.INT3_N( GPIO_0[14] ) , // output INT3_N
.INT4_N( GPIO_0[20] ) , // output INT4_N
.R4300_DATA_IN( R4300_DATA_IN ) , // input [31:0] R4300_DATA_IN
.R4300_DATA_OUT( R4300_DATA_OUT ) , // output [31:0] R4300_DATA_OUT
.R4300_ADDR_OUT( R4300_ADDR_OUT ) , // output [31:0] R4300_ADDR_OUT
.R4300_BURST_COUNT( R4300_BURST_COUNT ) , // output [3:0] R4300_BURST_COUNT
.R4300_READ_REQ( R4300_READ_REQ ) , // output R4300_READ_REQ
.R4300_WRITE_REQ( R4300_WRITE_REQ ) , // output R4300_WRITE_REQ
.R4300_READDATA_VALID( 1'b1 ) , // input R4300_READDATA_VALID
.R4300_WRITE_ACK( 1'b1 ) // input R4300_WRITE_ACK
);
*/
wire [31:0] R4300_DATA_IN = 32'h3C09_3400/*synthesis keep*/;
//wire [31:0] R4300_DATA_IN = 32'hAC28_0010/*synthesis keep*/;
wire [31:0] R4300_DATA_OUT/*synthesis keep*/;
wire [31:0] R4300_ADDR_OUT/*synthesis keep*/;
wire [3:0] R4300_BURST_COUNT/*synthesis keep*/;
wire R4300_READ_REQ/*synthesis keep*/;
wire R4300_WRITE_REQ/*synthesis keep*/;
wire R4300_READDATA_VALID/*synthesis keep*/;
wire R4300_WRITE_DONE/*synthesis keep*/;
reg [31:0] FL_DATA_TEMP;
reg [31:0] SRAM_DATA_MUX;
reg [31:0] BYTE_ADDR/*synthesis noprune*/;
reg [31:0] BYTE_ADDR_BACKUP;
reg [31:0] WRITE_DATA_BACKUP/*synthesis noprune*/;
reg [2:0] BURST_COUNT/*synthesis noprune*/;
reg [2:0] BURST_COUNT_BACKUP/*synthesis noprune*/;
reg [3:0] BYTE_ENA_BACKUP/*synthesis noprune*/;
reg [7:0] BYTE_BUFFER [0:15];
reg [3:0] BYTE_COUNT/*synthesis noprune*/;
reg [5:0] state;
always @(posedge SYS_CLK or negedge KEY[0])
if (!KEY[0]) begin
state <= 0;
avm_waitrequest <= 1'b1;
avm_readdatavalid <= 1'b0;
BYTE_ADDR <= 0;
BYTE_COUNT <= 0;
end
else begin
case (state)
0: begin
avm_readdatavalid <= 1'b0;
avm_waitrequest <= 1'b0; // Ready to respond to a READ / WRITE command...
if (avm_read | avm_write) begin
BYTE_COUNT <= 0;
BYTE_ADDR <= avm_address;
BYTE_ADDR_BACKUP <= avm_address;
BURST_COUNT <= avm_burstcount; // <- This BURST_COUNT gets decremented below, so...
BURST_COUNT_BACKUP <= avm_burstcount; // We need a backup as well, as CPU core sometimes issues another READ while we're processing another.
BYTE_ENA_BACKUP <= avm_byteenable;
WRITE_DATA_BACKUP <= avm_writedata;
avm_waitrequest <= 1'b1; // Assert as soon as "avm_read" goes High, to say we're busy!
if (avm_read) state <= 4;
if (avm_write) state <= 16;
end
end
// READS...
4: begin
BYTE_BUFFER[BYTE_COUNT] <= DATA_READ_MUX[7:0];
BYTE_COUNT <= BYTE_COUNT + 1;
BYTE_ADDR <= BYTE_ADDR + 1;
state <= state + 1;
end
5: begin
BYTE_BUFFER[BYTE_COUNT] <= DATA_READ_MUX[15:8];
BYTE_COUNT <= BYTE_COUNT + 1;
BYTE_ADDR <= BYTE_ADDR + 1;
state <= state + 1;
end
6: begin
BYTE_BUFFER[BYTE_COUNT] <= DATA_READ_MUX[23:16];
BYTE_COUNT <= BYTE_COUNT + 1;
BYTE_ADDR <= BYTE_ADDR + 1;
state <= state + 1;
end
7: begin
BYTE_BUFFER[BYTE_COUNT] <= DATA_READ_MUX[31:24];
BYTE_COUNT <= BYTE_COUNT + 1;
BYTE_ADDR <= BYTE_ADDR + 1;
if (BURST_COUNT==1) begin // Check if done, then let the aoR3000 core read the WORDS...
avm_readdatavalid <= 1'b1;
BURST_COUNT <= BURST_COUNT_BACKUP;
BYTE_COUNT <= 0;
state <= state + 1;
end
else begin // Else, more WORDs left to fetch...
//BYTE_ADDR <= BYTE_ADDR + 4;
BURST_COUNT <= BURST_COUNT - 1;
state <= 4; // Fetch four more BYTES!
end
end
8: begin
if (BURST_COUNT==1) begin // Let the aoR3000 read the WORDS...
avm_readdatavalid <= 1'b0;
avm_waitrequest <= 1'b0;
state <= 0;
end
BURST_COUNT <= BURST_COUNT - 1; // ...(while decrementing BURST_COUNT.)
BYTE_COUNT <= BYTE_COUNT + 4; // (and incrementing the BYTE count by 4.)
end
// WRITES...
16: begin
BYTE_COUNT <= BYTE_COUNT + 1;
state <= state + 1;
end
17: begin
BYTE_COUNT <= BYTE_COUNT + 1;
state <= state + 1;
end
18: begin
BYTE_COUNT <= BYTE_COUNT + 1;
state <= state + 1;
end
19: begin
BYTE_COUNT <= BYTE_COUNT + 1;
state <= state + 1;
end
20: begin
avm_waitrequest <= 1'b0;
BURST_COUNT <= BURST_COUNT - 1;
state <= 0;
end
endcase
end
aoR3000 aoR3000_inst
(
.clk( SYS_CLK ) , // input clk
.rst_n( !SDRAM_INIT ) , // input rst_n
.interrupt_vector( interrupt_vector ) ,// input [5:0] interrupt_vector
.avm_address( avm_address ) , // output [31:0] avm_address
.avm_writedata( avm_writedata ) , // output [31:0] avm_writedata
.avm_byteenable( avm_byteenable ) , // output [3:0] avm_byteenable
.avm_burstcount( avm_burstcount ) , // output [2:0] avm_burstcount
.avm_write( avm_write ) , // output avm_write
.avm_read( avm_read ) , // output avm_read
.avm_waitrequest( avm_waitrequest ) , // input avm_waitrequest
.avm_readdata( avm_readdata ) , // input [31:0] avm_readdata
.avm_readdatavalid( avm_readdatavalid ) , // input avm_readdatavalid
.mem_result_index( mem_result_index ) ,// output [4:0] mem_result_index
.mem_result( mem_result ) , // output [31:0] mem_result
.if_pc( if_pc ) , // output [31:0] if_pc
.rf_cmd( rf_cmd ) , // output [6:0] rf_cmd
.force_mem_stall( force_mem_stall | DMA2_ACTIVE ), // input force_mem_stall
.inhibit_isolate_cache( inhibit_isolate_cache ),
.data_out( data_out )
);
wire inhibit_isolate_cache = (avm_address[28:24]==5'h1F);
//wire [31:0] data_address;
wire [31:0] data_out;
//wire exe_cmd_store;
//wire exe_cmd_load;
/*
scc scc_inst
(
.clk(clk) , // input clk
.cep(cep) , // input cep
.cen(cen) , // input cen
.reset_hw(reset_hw) , // input reset_hw
.cs(cs) , // input cs
.we(we) , // input we
.rs(rs) , // input [1:0] rs
.wdata(wdata) , // input [7:0] wdata
.rdata(rdata) , // output [7:0] rdata
._irq(_irq) , // output _irq
.rxd(rxd) , // input rxd
.txd(txd) , // output txd
.cts(cts) , // input cts
.rts(rts) , // output rts
.dcd_a(dcd_a) , // input dcd_a
.dcd_b(dcd_b) , // input dcd_b
.wreq(wreq) // output wreq
);
*/
async_transmitter async_transmitter_inst
(
.clk( SYS_CLK ) , // input clk
.TxD_start( PUTCHAR ) , // input TxD_start
.TxD_data( A0[7:0] ) , // input [7:0] TxD_data
.TxD( UART_TXD ) , // output TxD
.TxD_busy( TXD_BUSY ) // output TxD_busy
);
wire TXD_BUSY;
reg force_mem_stall;
reg [7:0] debug_state;
reg [7:0] run_count;
reg [31:0] pc_backup;
always @(posedge SYS_CLK or negedge KEY[0])
if (!KEY[0]) begin
debug_state <= 0;
pc_backup <= 32'h12345678;
force_mem_stall <= 1'b1;
end
else begin
case (debug_state)
0: begin
if (SW[0]) begin
force_mem_stall <= 1'b0; // RUN switch HIGH (active). Let CPU run.
if (SW[9] && BP_MATCHED) begin // Nice breakpoint (using the OSD, and PS/2 keyboard).
force_mem_stall <= 1'b1;
debug_state <= 7;
end
else begin
if (SW[8]) debug_state <= 8;
// if (TXD_BUSY) force_mem_stall <= 1'b1;
// else force_mem_stall <= 1'b0;
end
end
else begin // RUN switch LOW (inactive!)...
force_mem_stall <= 1'b1;
if (!KEY[3]) begin
debug_state <= 1; // KEY[3] pressed (active-low)...
end
if (!KEY[2]) begin
run_count <= 8'd64;
debug_state <= 4; // KEY[2] pressed (active-low)...
end
end
end
8: begin
force_mem_stall <= 1'b1;
debug_state <= 0;
end
// Single-cycle...
1: begin
pc_backup <= if_pc;
force_mem_stall <= 1'b0;
debug_state <= debug_state + 1;
end
2: if (if_pc != pc_backup) begin // Let CPU run, until Program Counter changes...
force_mem_stall <= 1'b1;
debug_state <= debug_state + 1;
end
3: begin
if (KEY[3]) debug_state <= 0; // Wait until KEY[3] goes HIGH (not pressed) again.
end
// Multiple cycles...
4: begin
pc_backup <= if_pc;
force_mem_stall <= 1'b0;
debug_state <= debug_state + 1;
end
5: if (if_pc != pc_backup) begin // Let CPU run, until Program Counter changes...
force_mem_stall <= 1'b1;
debug_state <= debug_state + 1;
end
6: begin
if (run_count>0) begin
run_count <= run_count - 1;
debug_state <= 4;
end
else begin
if (KEY[2] & !SW[0]) debug_state <= 0; // Wait for KEY[2] to go HIGH (not pressed), and the RUN switch to go LOW, so we can stop after the breakpoint!
end
end
// Wait for RUN switch LOW, so we can stop after a breakpoint!
7: begin
if (!SW[0]) debug_state <= 0;
end
default:;
endcase
end
wire [4:0] mem_result_index;
wire [31:0] mem_result;
wire [31:0] if_pc;
wire [31:0] avm_address/*synthesis keep*/;
wire [31:0] avm_writedata/*synthesis keep*/;
wire [3:0] avm_byteenable;
wire [2:0] avm_burstcount;
reg avm_waitrequest = 1'b1;
reg avm_readdatavalid = 1'b0;
// This should be the correct endianess when using the byte-flipped version of IP224613.BIN (so the strings read correctly in a Hex editor)...
wire [31:0] data_flipped = (BYTE_COUNT[3:2]==0) ? {BYTE_BUFFER[3],BYTE_BUFFER[2],BYTE_BUFFER[1],BYTE_BUFFER[0]} :
(BYTE_COUNT[3:2]==1) ? {BYTE_BUFFER[7],BYTE_BUFFER[6],BYTE_BUFFER[5],BYTE_BUFFER[4]} :
(BYTE_COUNT[3:2]==2) ? {BYTE_BUFFER[11],BYTE_BUFFER[10],BYTE_BUFFER[9],BYTE_BUFFER[8]} :
{BYTE_BUFFER[15],BYTE_BUFFER[14],BYTE_BUFFER[13],BYTE_BUFFER[12]};
//wire [31:0] data_normal = (BYTE_COUNT[3:2]==0) ? {BYTE_BUFFER[0],BYTE_BUFFER[1],BYTE_BUFFER[2],BYTE_BUFFER[3]} :
// (BYTE_COUNT[3:2]==1) ? {BYTE_BUFFER[4],BYTE_BUFFER[5],BYTE_BUFFER[6],BYTE_BUFFER[7]} :
// (BYTE_COUNT[3:2]==2) ? {BYTE_BUFFER[8],BYTE_BUFFER[9],BYTE_BUFFER[10],BYTE_BUFFER[11]} :
// {BYTE_BUFFER[12],BYTE_BUFFER[13],BYTE_BUFFER[14],BYTE_BUFFER[15]};
// Attempt to wordswap some strings in the BIOS ROM (for serial output), but it screws up other stuff, since BYTE_ADDR doesn't get updated at the correct times for instruction fetches.
//wire [31:0] avm_readdata/*synthesis noprune*/ = (BYTE_ADDR>=32'h1FC0_3D50 && BYTE_ADDR<=32'h1FC0_3DEF) ? data_normal : data_flipped;
wire [31:0] avm_readdata/*synthesis noprune*/ = data_flipped;
wire BANK1_CS = (BYTE_ADDR >= 32'h0000_0000 && BYTE_ADDR <= 32'h0007_FFFF)/*synthesis keep*/; // Mirror of first 512KB of main RAM.
wire MAINRAM_CS = (BYTE_ADDR >= 32'h0800_0000 && BYTE_ADDR <= 32'h0FFF_FFFF)/*synthesis keep*/; // 128MB of main RAM.
wire NEWPORT_CS = (BYTE_ADDR >= 32'h1F0F_0000 && BYTE_ADDR <= 32'h1F0F_1FFF)/*synthesis keep*/; // Indy GFX card. (with REX3 rasteriser / span / line drawing etc.)
wire MC_CS = (BYTE_ADDR >= 32'h1FA0_0000 && BYTE_ADDR <= 32'h1FA1_FFFF)/*synthesis keep*/;
wire PBUSDMA_CS = (BYTE_ADDR >= 32'h1FB8_0000 && BYTE_ADDR <= 32'h1FB8_FFFF)/*synthesis keep*/;
wire HD_ENET_CS = (BYTE_ADDR >= 32'h1FB9_0000 && BYTE_ADDR <= 32'h1FB9_FFFF)/*synthesis keep*/;
wire SCRATCH_CS = (BYTE_ADDR >= 32'h1FBB_0000 && BYTE_ADDR <= 32'h1FBB_0003)/*synthesis keep*/;
wire HD0_CS = (BYTE_ADDR >= 32'h1FBC_0000 && BYTE_ADDR <= 32'h1FBC_7FFF)/*synthesis keep*/;
wire UNKBUS0_CS = (BYTE_ADDR >= 32'h1FBC_8000 && BYTE_ADDR <= 32'h1FBC_FFFF)/*synthesis keep*/;
wire HAL2_CS = (BYTE_ADDR >= 32'h1FBD_8000 && BYTE_ADDR <= 32'h1FBD_83FF)/*synthesis keep*/;
wire HACK_CS = (BYTE_ADDR >= 32'h1FBD_8400 && BYTE_ADDR <= 32'h1FBD_87FF)/*synthesis keep*/;
wire PBUS4_CS = (BYTE_ADDR >= 32'h1FBD_9000 && BYTE_ADDR <= 32'h1FBD_93FF)/*synthesis keep*/;
wire IOC_CS = (BYTE_ADDR >= 32'h1FBD_9800 && BYTE_ADDR <= 32'h1FBD_9BFF)/*synthesis keep*/;
wire SMALLRAM_CS = (BYTE_ADDR >= 32'h1FBD_C000 && BYTE_ADDR <= 32'h1FBD_D3FF)/*synthesis keep*/; // Defined as two small blocks in MAME source? (indy_indigo2.cpp).
wire DS1386_CS = (BYTE_ADDR >= 32'h1FBE_0000 && BYTE_ADDR <= 32'h1FBE_04FF)/*synthesis keep*/;
wire BIOS_CS = (BYTE_ADDR >= 32'h1FC0_0000 && BYTE_ADDR <= 32'h1FC7_FFFF)/*synthesis keep*/; // 512KBytes for BIOS ROM.
wire MAINRAM2_CS = (BYTE_ADDR >= 32'h2000_0000 && BYTE_ADDR <= 32'h2FFF_FFFF)/*synthesis keep*/; // 128MB of extra RAM. Can only be accessed via Virtual Memory, apparently.
/*
assign GPIO_0[0] = BANK1_CS;
assign GPIO_0[1] = MAINRAM_CS;
assign GPIO_0[2] = NEWPORT_CS;
assign GPIO_0[3] = MC_CS;
assign GPIO_0[4] = HD_ENET_CS;
assign GPIO_0[5] = SCRATCH_CS;
assign GPIO_0[6] = HD0_CS;
assign GPIO_0[7] = UNKBUS0_CS;
assign GPIO_0[8] = PBUSDMA_CS;
assign GPIO_0[9] = HAL2_CS;
assign GPIO_0[10] = HACK_CS;
assign GPIO_0[11] = PBUS4_CS;
assign GPIO_0[12] = IOC_CS;
assign GPIO_0[13] = SMALLRAM_CS;
assign GPIO_0[14] = DS1386_CS;
assign GPIO_0[15] = BIOS_CS;
assign GPIO_0[16] = MAINRAM2_CS;
*/
wire [31:0] HAL2_FUDGE = (BYTE_ADDR[15:0] >= 16'h0010 && BYTE_ADDR[15:0] <= 16'h001f) ? 32'h00000004 :
(BYTE_ADDR[15:0] >= 16'h0020 && BYTE_ADDR[15:0] <= 16'h002f) ? 32'h00004011 : 32'hFFFFFFFF;
wire [31:0] NEWPORT_FUDGE = 32'hFFFFFFFF;
wire SYSID_CS = (BYTE_ADDR >= 32'h1FBD_9858 && BYTE_ADDR <= 32'h1FBD_9B5B);
wire [31:0] DATA_READ_MUX = (BANK1_CS | MAINRAM_CS | MAINRAM2_CS) ? {SDRAM_DOUT, SDRAM_DOUT} :
(NEWPORT_CS) ? NEWPORT_FUDGE :
(HAL2_CS) ? HAL2_FUDGE :
//(IOC_CS) ? IOC_FUDGE :
(SCC_CS) ? SCC_REG :
(GENCON_CS) ? GENCON_REG :
(DALLAS_REG_FB_CS) ? DALLAS_REG_FB :
(DALLAS_REG_FF_CS) ? DALLAS_REG_FF :
(PBUS4_0_CS) ? PBUS4_REG0 :
(PBUS4_1_CS) ? PBUS4_REG1 :
(PBUS4_2_CS) ? PBUS4_REG2 :
(PBUS4_3_CS) ? PBUS4_REG3 :
(PBUS4_4_CS) ? PBUS4_REG4 :
(PBUS4_5_CS) ? PBUS4_REG5 :
(HD0_REG0_CS) ? HD0_REG0 :
(HD0_REG1_CS) ? HD0_REG1 :
(INT3_L0_STAT_CS) ? INT3_L0_STAT_REG :
(INT3_L0_MASK_CS) ? INT3_L0_MASK_REG :
(INT3_L1_STAT_CS) ? INT3_L1_STAT_REG :
(INT3_L1_MASK_CS) ? INT3_L1_MASK_REG :
(INT3_MAP_STAT_CS) ? INT3_MAP_STAT_REG :
(INT3_MAP_MASK0_CS) ? INT3_MAP_MASK0_REG :
(INT3_MAP_MASK1_CS) ? INT3_MAP_MASK1_REG :
//(SYSID_CS) ? 32'h00000020 : // Indy System ID? Rev 0 MC?
(SYSID_CS) ? 32'h00000021 : // Indy System ID? Rev 1 MC?
//(SYSID_CS) ? 32'h00000011 : // Indigo System ID?
(MC_CS) ? MC_DATA_OUT :
(HD_ENET_CS) ? HD_ENET_DATA_OUT :
//(SCRATCH_CS) ? SCRATCH_DOUT :
RESET_REG_CS ? {24'h000000, 2'b00, RESET_REG} :
//(BYTE_ADDR>=32'h1FC0_0560 && BYTE_ADDR<=32'h1FC0_0563) ? 32'h00000000 : // NOP the call to the SDRAM test routine, I think. OzOnE.
(BYTE_ADDR>=32'h1FB8_0D13 && BYTE_ADDR<=32'h1FB8_0D17) ? 32'hFFFFFFFF : // ****** FUDGE for Indigo only - spoofs that the serial port is ready ******
//(BYTE_ADDR>=32'h1FC0_12A8 && BYTE_ADDR<=32'h1FC0_12B3) ? 32'h00000000 : // NOP "cache" instructions, as they cause an exception on the aoR3000 atm.
//(BYTE_ADDR>=32'h1FC0_3BF4 && BYTE_ADDR<=32'h1FC0_3BF8) ? 32'h00000000 : // NOP the call to the serial routine, I think. OzOnE.
//(BYTE_ADDR>=32'h1FC0_4080 && BYTE_ADDR<=32'h1FC0_4083) ? 32'h00000000 : // NOP the endless loop after a self-test fail. (won't reach DRAM test without this).
//(BYTE_ADDR>=32'h1FC0_3C20 && BYTE_ADDR<=32'h1FC0_3C23) ? 32'h03E00008 : // jr $ra.
(BIOS_CS) ? {FL_DQ, FL_DQ, FL_DQ, FL_DQ} : 32'h00000000;
// For READs...
wire SCC_CS = (BYTE_ADDR >= 32'h1FBD_9830 && BYTE_ADDR <= 32'h1FBD_9833);
wire GENCON_CS = (BYTE_ADDR >= 32'h1FBD_984C && BYTE_ADDR <= 32'h1FBD_984F);
wire PBUS4_0_CS = (BYTE_ADDR >= 32'h1FBD_9000 && BYTE_ADDR <= 32'h1FBD_9003);
wire PBUS4_1_CS = (BYTE_ADDR >= 32'h1FBD_9004 && BYTE_ADDR <= 32'h1FBD_9007);
wire PBUS4_2_CS = (BYTE_ADDR >= 32'h1FBD_9008 && BYTE_ADDR <= 32'h1FBD_900B);
wire PBUS4_3_CS = (BYTE_ADDR >= 32'h1FBD_900C && BYTE_ADDR <= 32'h1FBD_900F);
wire PBUS4_4_CS = (BYTE_ADDR >= 32'h1FBD_9010 && BYTE_ADDR <= 32'h1FBD_9013);
wire PBUS4_5_CS = (BYTE_ADDR >= 32'h1FBD_9014 && BYTE_ADDR <= 32'h1FBD_9017);
wire RESET_REG_CS = (BYTE_ADDR >= 32'h1FBD_9870 && BYTE_ADDR <= 32'h1FBD_9873);
wire HD0_REG0_CS = (BYTE_ADDR >= 32'h1FBC_0000 && BYTE_ADDR <= 32'h1FBC_0003) ||
(BYTE_ADDR >= 32'h1FBC_4000 && BYTE_ADDR <= 32'h1FBC_4003); // WD33 SCSI HD0 Status Read.
wire HD0_REG1_CS = (BYTE_ADDR >= 32'h1FBC_0004 && BYTE_ADDR <= 32'h1FBC_0007) ||
(BYTE_ADDR >= 32'h1FBC_4004 && BYTE_ADDR <= 32'h1FBC_4007); // WD33 SCSI HD0 Register Read.
wire DALLAS_REG_FB_CS = (BYTE_ADDR >= 32'h1FBE_00F8 && BYTE_ADDR <= 32'h1FBE_00FB); // Kludge, so it passes the self-test.
wire DALLAS_REG_FF_CS = (BYTE_ADDR >= 32'h1FBE_00FC && BYTE_ADDR <= 32'h1FBE_00FF); // Kludge, so it passes the self-test.
wire INT3_L0_STAT_CS = (BYTE_ADDR >= 32'h1FBD_9880 && BYTE_ADDR <= 32'h1FBD_9883);
wire INT3_L0_MASK_CS = (BYTE_ADDR >= 32'h1FBD_9884 && BYTE_ADDR <= 32'h1FBD_9887);
wire INT3_L1_STAT_CS = (BYTE_ADDR >= 32'h1FBD_9888 && BYTE_ADDR <= 32'h1FBD_988B);
wire INT3_L1_MASK_CS = (BYTE_ADDR >= 32'h1FBD_988C && BYTE_ADDR <= 32'h1FBD_988F);
wire INT3_MAP_STAT_CS = (BYTE_ADDR >= 32'h1FBD_9890 && BYTE_ADDR <= 32'h1FBD_9893);
wire INT3_MAP_MASK0_CS = (BYTE_ADDR >= 32'h1FBD_9894 && BYTE_ADDR <= 32'h1FBD_9897);
wire INT3_MAP_MASK1_CS = (BYTE_ADDR >= 32'h1FBD_9898 && BYTE_ADDR <= 32'h1FBD_989B);
assign LEDR[5:0] = RESET_REG;
reg [31:0] SCC_REG;
reg [31:0] GENCON_REG;
reg [31:0] DALLAS_REG_FB;
reg [31:0] DALLAS_REG_FF;
reg [31:0] PBUS4_REG0;
reg [31:0] PBUS4_REG1;
reg [31:0] PBUS4_REG2;
reg [31:0] PBUS4_REG3;
reg [31:0] PBUS4_REG4;
reg [31:0] PBUS4_REG5;
reg [31:0] HD0_REG0;
reg [31:0] HD0_REG1;
reg [31:0] INT3_L0_STAT_REG;
reg [31:0] INT3_L0_MASK_REG;
reg [31:0] INT3_L1_STAT_REG;
reg [31:0] INT3_L1_MASK_REG;
reg [31:0] INT3_MAP_STAT_REG;
reg [31:0] INT3_MAP_MASK0_REG;
reg [31:0] INT3_MAP_MASK1_REG;
reg [7:0] A0/*synthesis noprune*/;
reg PUTCHAR/*synthesis noprune*/;
reg [5:0] RESET_REG;
always @(posedge SYS_CLK or negedge KEY[0])
if (!KEY[0]) begin
SCC_REG <= 32'h00000000;
GENCON_REG <= 32'h00000000;
DALLAS_REG_FB <= 32'h00000000;
DALLAS_REG_FF <= 32'h00000000;
PBUS4_REG0 <= 32'h00000000;
PBUS4_REG1 <= 32'h00000000;
PBUS4_REG2 <= 32'h00000000;
PBUS4_REG3 <= 32'h00000000;
PBUS4_REG4 <= 32'h00000000;
PBUS4_REG5 <= 32'h00000000;
INT3_L0_STAT_REG <= 32'h00000000;
INT3_L0_MASK_REG <= 32'h00000000;
INT3_L1_STAT_REG <= 32'h00000000;
INT3_L1_MASK_REG <= 32'h00000000;
INT3_MAP_STAT_REG <= 32'h00000000;
INT3_MAP_MASK0_REG <= 32'h00000000;
INT3_MAP_MASK1_REG <= 32'h00000000;
RESET_REG <= 6'b001111;
PUTCHAR <= 1'b0;
end
else begin
PUTCHAR <= 1'b0;
// Looks like the Indigo BIOS also uses the $v1 to store the characters as they are output to the serial port.
// But obviously the routines are at different addresses depending on the exact BIOS...
if (if_pc[28:0]==29'h1FC0_2B50) PUTCHAR <= 1'b1; // IP12 - Indigo BIOS.
//if (if_pc[28:0]==29'h1FC0_3CD0) PUTCHAR <= 1'b1; // IP24 - Indy BIOS.
if (mem_result_index!=0 && mem_result_index==5'd3) A0 <= mem_result[7:0]; // Capture writes to CPU reg "v1" (reg 3). Lower byte only.
/*
if (state==18 && (BYTE_ADDR >= 32'h1FBD_9833 && BYTE_ADDR <= 32'h1FBD_9836)) begin
A0 <= WRITE_DATA_BACKUP;
PUTCHAR <= 1'b1;
end
*/
if (state==18 && (BYTE_ADDR >= 32'h1FBC_0000 && BYTE_ADDR <= 32'h1FBC_0003)) HD0_REG0 <= WRITE_DATA_BACKUP; // WD33 SCSI HD0 Status Read.
if (state==18 && (BYTE_ADDR >= 32'h1FBC_4000 && BYTE_ADDR <= 32'h1FBC_4003)) HD0_REG0 <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBC_0004 && BYTE_ADDR <= 32'h1FBC_0007)) HD0_REG1 <= WRITE_DATA_BACKUP; // WD33 SCSI HD0 Register Read.
if (state==18 && (BYTE_ADDR >= 32'h1FBC_4004 && BYTE_ADDR <= 32'h1FBC_4007)) HD0_REG1 <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBE_00F8 && BYTE_ADDR <= 32'h1FBE_00FB)) DALLAS_REG_FB <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBE_00FC && BYTE_ADDR <= 32'h1FBE_00FF)) DALLAS_REG_FF <= WRITE_DATA_BACKUP;
//if (state==18 && (BYTE_ADDR >= 32'h1FBD_9830 && BYTE_ADDR <= 32'h1FBD_9833)) SCC_REG <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBD_984C && BYTE_ADDR <= 32'h1FBD_984F)) GENCON_REG <= WRITE_DATA_BACKUP;
if (SCC_CS && state==4) begin
if (SCC_REG != 32'h00000004) SCC_REG <= 32'h44444444;
else SCC_REG <= 32'h00000000;
end
if (state==18 && (BYTE_ADDR >= 32'h1FBD_9000 && BYTE_ADDR <= 32'h1FBD_9003)) PBUS4_REG0 <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBD_9004 && BYTE_ADDR <= 32'h1FBD_9007)) PBUS4_REG1 <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBD_9008 && BYTE_ADDR <= 32'h1FBD_900B)) PBUS4_REG2 <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBD_900C && BYTE_ADDR <= 32'h1FBD_900F)) PBUS4_REG3 <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBD_9010 && BYTE_ADDR <= 32'h1FBD_9013)) PBUS4_REG4 <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBD_9014 && BYTE_ADDR <= 32'h1FBD_9017)) PBUS4_REG5 <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBD_9880 && BYTE_ADDR <= 32'h1FBD_9883)) INT3_L0_STAT_REG <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBD_9884 && BYTE_ADDR <= 32'h1FBD_9887)) INT3_L0_MASK_REG <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBD_9888 && BYTE_ADDR <= 32'h1FBD_988B)) INT3_L1_STAT_REG <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBD_988C && BYTE_ADDR <= 32'h1FBD_988F)) INT3_L1_MASK_REG <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBD_9890 && BYTE_ADDR <= 32'h1FBD_9893)) INT3_MAP_STAT_REG <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBD_9894 && BYTE_ADDR <= 32'h1FBD_9897)) INT3_MAP_MASK0_REG <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBD_9898 && BYTE_ADDR <= 32'h1FBD_989F)) INT3_MAP_MASK1_REG <= WRITE_DATA_BACKUP;
if (state==18 && (BYTE_ADDR >= 32'h1FBD_9870 && BYTE_ADDR <= 32'h1FBD_9873)) RESET_REG <= WRITE_DATA_BACKUP[5:0];
end
wire [31:0] MC_DATA_OUT;
wire MC_WR = state==18 && (BYTE_ADDR >= 32'h1FA0_0000 && BYTE_ADDR <= 32'h1FA1_FFFF);
wire MC_RD = READ_STATE && (BYTE_ADDR >= 32'h1FA0_0000 && BYTE_ADDR <= 32'h1FA1_FFFF);
sgi_mc sgi_mc_inst
(
.RESET_N( KEY[0] ) , // input RESET_N
.SYS_CLK( SYS_CLK ) , // input SYS_CLK
.READ_ADDR_LOW( BYTE_ADDR[15:0] ) , // input [15:0] READ_ADDR_LOW
.MC_DATA_OUT( MC_DATA_OUT ) , // output [31:0] MC_DATA_OUT
.MC_RD( MC_RD ) ,
.WRITE_ADDR_LOW( BYTE_ADDR[15:0] ) , // input [15:0] WRITE_ADDR_LOW
.MC_DATA_IN( WRITE_DATA_BACKUP ) , // input [31:0] MC_DATA_IN
.MC_WR( MC_WR ) // input MC_WR
// .EEROM_CS(EEROM_CS) , // output EEROM_CS
// .EEROM_SCK(EEROM_SCK) , // output EEROM_SCK
// .EEROM_SO(EEROM_SO) , // output EEROM_SO
// .EEROM_SI(EEROM_SI) // input EEROM_SI
);
wire [31:0] HD_ENET_DATA_OUT;
wire HD_ENET_WR = state==18 && (BYTE_ADDR >= 32'h1FB9_0000 && BYTE_ADDR <= 32'h1FB9_FFFF);
sgi_hd_enet sgi_hd_enet_inst
(
.RESET_N( KEY[0] ) , // input RESET_N
.SYS_CLK( SYS_CLK ) , // input SYS_CLK
.READ_ADDR_LOW( BYTE_ADDR[15:0] ) , // input [15:0] READ_ADDR_LOW
.HD_ENET_DATA_OUT( HD_ENET_DATA_OUT ) , // output [31:0] HD_ENET_DATA_OUT
.WRITE_ADDR_LOW( BYTE_ADDR[15:0] ) , // input [15:0] WRITE_ADDR_LOW
.HD_ENET_DATA_IN( WRITE_DATA_BACKUP ) , // input [31:0] HD_ENET_DATA_IN
.HD_ENET_WR( HD_ENET_WR ) // input HD_ENET_WR
);
wire D2_MADR_CS = (BYTE_ADDR >= 32'h1F80_10A0 && BYTE_ADDR <= 32'h1F80_10A3); // DMA 2 (GPU) Base Address reg.
wire D2_BCR_CS = (BYTE_ADDR >= 32'h1F80_10A4 && BYTE_ADDR <= 32'h1F80_10A7); // DMA 2 (GPU) Block Control Reg.
wire D2_CHCR_CS = (BYTE_ADDR >= 32'h1F80_10A8 && BYTE_ADDR <= 32'h1F80_10AB); // DMA 2 (GPU) Channel Control reg.
// Global DMA regs...
wire DPCR_CS = (BYTE_ADDR >= 32'h1F80_10F0 && BYTE_ADDR <= 32'h1F80_10F3); // DMA Priority Control Reg.
wire DICR_CS = (BYTE_ADDR >= 32'h1F80_10F4 && BYTE_ADDR <= 32'h1F80_10F7); // Interrupt Control Reg.
reg [23:0] D2_MADR_REG/*synthesis noprune*/;
reg [31:0] D2_BCR_REG/*synthesis noprune*/;
reg [31:0] D2_CHCR_REG/*synthesis noprune*/;
// Global DMA regs...
reg [31:0] DPCR_REG; // DMA Priority Control Reg.
reg [31:0] DICR_REG; // Interrupt Control Reg.
reg [31:0] BIU_REG/*synthesis noprune*/;
reg [15:0] PSX_SEG;
//reg [7:0] A0/*synthesis noprune*/;
//reg PUTCHAR/*synthesis noprune*/;
reg [10:0] INT_STAT/*synthesis noprune*/;
reg [10:0] INT_MASK/*synthesis noprune*/;
//reg MIPS_INT;
//wire MIPS_INT = !KEY[1]; // TESTING - Using key (button) as an Interrupt (SGI testing). OzOnE.
//wire [5:0] interrupt_vector = {2'b00, MIPS_INT, 2'b00, MIPS_INT};
wire [5:0] interrupt_vector = 6'b000000;
/*
wire VBLANK = PATT_VS_N;
reg VBLANK_1;
wire VBLANK_INT_TRIG = (!VBLANK & VBLANK_1); // IRQ0. Bodged V_BLANK Interrupt (for now). Check for FALLING edge of PATT_VS_N. OzOnE.
wire GPU_INT_TRIG = 1'b0; // IRQ1. Can be requested via GP0(1Fh) command (rarely used)
wire CDROM_INT_TRIG = 1'b0; // IRQ2
wire DMA_INT_TRIG = 1'b0; // IRQ3
wire TMR0_INT_TRIG = X_OUT[2]; // IRQ4. Timer 0 aka Root Counter 0 (Sysclk or Dotclk)
wire TMR1_INT_TRIG = PATT_HS_N; // IRQ5. Timer 1 aka Root Counter 1 (Sysclk or H-blank)
wire TMR2_INT_TRIG = X_OUT[4]; // IRQ6. Timer 2 aka Root Counter 2 (Sysclk or Sysclk/8)
wire PAD_INT_TRIG = KEY[1]; // IRQ7. Controller and Memory Card - Byte Received Interrupt
wire SIO_INT_TRIG = 1'b0; // IRQ8
wire SPU_INT_TRIG = 1'b0; // IRQ9
wire LIGHT_INT_TRIG = 1'b0; // IRQ10. Controller - Lightpen Interrupt (reportedly also PIO...?)
*/
//reg DMA0_ACTIVE = 0;
//reg DMA1_ACTIVE = 0;
//reg DMA2_ACTIVE = 0;
wire DMA2_ACTIVE = 0;
//reg DMA3_ACTIVE = 0;
//reg DMA4_ACTIVE = 0;
//reg DMA5_ACTIVE = 0;
//reg DMA6_ACTIVE = 0;
reg GPU_DACK;
reg [23:0] DMA_BYTE_ADDR/*synthesis noprune*/;
reg [15:0] DMA_BYTE_COUNT/*synthesis noprune*/;
reg [7:0] DMA_STATE;
/*
always @(posedge SYS_CLK or negedge KEY[0])
if (!KEY[0]) begin
BIU_REG <= 32'h00000000;
PSX_SEG <= 8'h00;
A0 <= 8'h00;
PUTCHAR <= 1'b0;
INT_STAT <= 11'h00000000;
INT_MASK <= 11'h00000000;
MIPS_INT <= 1'b0;
DMA0_ACTIVE <= 1'b0;
DMA1_ACTIVE <= 1'b0;
DMA2_ACTIVE <= 1'b0;
DMA3_ACTIVE <= 1'b0;
DMA4_ACTIVE <= 1'b0;
DMA5_ACTIVE <= 1'b0;
DMA6_ACTIVE <= 1'b0;
D2_BCR_REG <= 32'h00000000;
D2_CHCR_REG <= 32'h00000000;
DMA_STATE <= 8'd0;
DMA_BYTE_ADDR <= 24'h000000;
GPU_DACK <= 1'b0;
end
else begin
VBLANK_1 <= VBLANK;
if (VBLANK_INT_TRIG) INT_STAT[0] <= 1; // IRQ0
if (GPU_INT_TRIG) INT_STAT[1] <= 1; // IRQ1
if (CDROM_INT_TRIG) INT_STAT[2] <= 1; // IRQ2
if (DMA_INT_TRIG) INT_STAT[3] <= 1; // IRQ3
if (TMR0_INT_TRIG) INT_STAT[4] <= 1; // IRQ4
if (TMR1_INT_TRIG) INT_STAT[5] <= 1; // IRQ5
if (TMR2_INT_TRIG) INT_STAT[6] <= 1; // IRQ6
if (PAD_INT_TRIG) INT_STAT[7] <= 1; // IRQ7
if (SIO_INT_TRIG) INT_STAT[8] <= 1; // IRQ8
if (SPU_INT_TRIG) INT_STAT[9] <= 1; // IRQ9
if (LIGHT_INT_TRIG) INT_STAT[10] <= 1; // IRQ10
//MIPS_INT <= INT_STAT & INT_MASK;
// if (BIU_CS && (state==18)) BIU_REG <= WRITE_DATA_BACKUP;
if (mem_result_index!=0 && mem_result_index==5'd4) A0 <= mem_result[7:0]; // Capture writes to CPU reg "a0" (reg 4). Lower byte only.
// This is for the debug serial output atm, as I'm not sure if the BIOS is using the SIO or not?
if (if_pc==32'h000005F4) PUTCHAR <= 1'b1;
else PUTCHAR <= 1'b0;
// DMA regiter WRITES...
if (D2_MADR_CS && state==16) D2_MADR_REG <= WRITE_DATA_BACKUP; // DMA 2 (GPU) Base Address reg.
if (D2_BCR_CS && state==16) D2_BCR_REG <= WRITE_DATA_BACKUP; // DMA 2 (GPU) Block Control Reg.
if (D2_CHCR_CS && state==16) D2_CHCR_REG <= WRITE_DATA_BACKUP; // DMA 2 (GPU) Channel Control reg.
if (DPCR_CS && state==16) DPCR_REG <= WRITE_DATA_BACKUP; // DMA Priority Control Reg.
if (DICR_CS && state==16) DICR_REG <= WRITE_DATA_BACKUP; // Interrupt Control Reg.
case (DMA_STATE)
0: begin
// if (RESET_COUNT>0) begin // Still in Reset, clear VRAM!
// DMA2_ACTIVE <= 1'b1;
// GPU_DACK <= 1'b1;
// DMA_STATE <= DMA_STATE + 1;
// end
// else begin
// DMA2_ACTIVE <= 1'b0;
// GPU_DACK <= 1'b0;
// DMA_STATE <= 2;
// end
end
1: begin
DMA_BYTE_ADDR <= DMA_BYTE_ADDR + 2;
GPU_DACK <= 1'b1;
DMA_STATE <= 1'b0;
end
2: begin
//if (D2_CHCR_REG[24]) begin // Start/Busy bit set!
if (D2_CHCR_REG==32'h01000201 && state==0 && !avm_read) begin // Check for VRAM Write (with Start bit set)!
DMA_BYTE_ADDR <= 0; // SRAM (VRAM) WRITE Address.
if (D2_BCR_REG>0) DMA_BYTE_COUNT <= (D2_BCR_REG[15:0]*D2_BCR_REG[31:16])*2; // VRAM Writes (Syncmode==1).
else DMA_BYTE_COUNT <= 'h19000;
DMA2_ACTIVE <= 1'b1;
DMA_STATE <= DMA_STATE + 1;
end
end
3: begin
if (DMA_BYTE_COUNT>0) begin
// if (REAL_GPUDREQ) begin
// GPU_DACK <= 1'b1;
// D2_MADR_REG <= D2_MADR_REG + 2; // SDRAM READ Address.
// DMA_BYTE_ADDR <= DMA_BYTE_ADDR + 2; // SRAM (VRAM) WRITE Address.
DMA_BYTE_COUNT <= DMA_BYTE_COUNT - 1;
// if (!D2_MADR_REG[1]) GPU_WRITE_UPPER <= SDRAM_DOUT; // TESTING!!
// end
//else DMA2_ACTIVE <= 1'b0;
DMA_STATE <= DMA_STATE + 1; // Have to toggle the GPU_DACK signal between each WORD Write.
end
else begin
DMA2_ACTIVE <= 1'b0;
GPU_DACK <= 1'b0;
D2_CHCR_REG[24] <= 1'b0;
DMA_STATE <= 2;
end
end
4: begin
GPU_DACK <= 1'b0;
DMA_STATE <= DMA_STATE - 1;
end
default:;
endcase
end
*/
// The lower three bits of each NIBBLE of DPCR is the priorty value of the respective DMA channel (0-7. 0=Highest. 7=Lowest).
// The upper bit of each nibble is the "Master Enable" bit for each channel...
//
// 0-2 DMA0, MDECin Priority (0..7; 0=Highest, 7=Lowest)
// 3 DMA0, MDECin Master Enable (0=Disable, 1=Enable)
// 4-6 DMA1, MDECout Priority (0..7; 0=Highest, 7=Lowest)
// 7 DMA1, MDECout Master Enable (0=Disable, 1=Enable)
// 8-10 DMA2, GPU Priority (0..7; 0=Highest, 7=Lowest)
// 11 DMA2, GPU Master Enable (0=Disable, 1=Enable)
//
wire BIU_IS1 = BIU_REG[11]; // Instruction Cache Size, bit [1].
wire BIU_DS = BIU_REG[7]; // Data Cache size (might be only 1 bit on the PS1??)
wire BIU_RAM = BIU_REG[3]; // Enable D-Cache as a Scratchpad??
wire BIU_TAG = BIU_REG[2]; //
wire BIU_INV = BIU_REG[1]; // Invalidate Cache tags?
wire BIU_LOCK = BIU_REG[0]; // ??