-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexplore_data3.py
1109 lines (1030 loc) · 58.4 KB
/
explore_data3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
from numpy import float64
__copyright__ = "Copyright 2018, Elphel, Inc."
__license__ = "GPL-3.0+"
__email__ = "andrey@elphel.com"
import os
import sys
import glob
import imagej_tiff as ijt
import numpy as np
import resource
import timeit
import matplotlib.pyplot as plt
from scipy.ndimage.filters import gaussian_filter
import time
import tensorflow as tf
#http://stackoverflow.com/questions/287871/print-in-terminal-with-colors-using-python
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[38;5;214m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
BOLDWHITE = '\033[1;37m'
UNDERLINE = '\033[4m'
TIME_START = time.time()
TIME_LAST = TIME_START
def print_time(txt="",end="\n"):
global TIME_LAST
t = time.time()
if txt:
txt +=" "
print(("%s"+bcolors.BOLDWHITE+"at %.4fs (+%.4fs)"+bcolors.ENDC)%(txt,t-TIME_START,t-TIME_LAST), end = end)
TIME_LAST = t
def _dtype_feature(ndarray):
"""match appropriate tf.train.Feature class with dtype of ndarray. """
assert isinstance(ndarray, np.ndarray)
dtype_ = ndarray.dtype
if dtype_ == np.float64 or dtype_ == np.float32:
return lambda array: tf.train.Feature(float_list=tf.train.FloatList(value=array))
elif dtype_ == np.int64:
return lambda array: tf.train.Feature(int64_list=tf.train.Int64List(value=array))
else:
raise ValueError("The input should be numpy ndarray. \
Instead got {}".format(ndarray.dtype))
def readTFRewcordsEpoch(train_filename):
# filenames = [train_filename]
# dataset = tf.data.TFRecordDataset(filenames)
if not '.tfrecords' in train_filename:
train_filename += '.tfrecords'
record_iterator = tf.python_io.tf_record_iterator(path=train_filename)
corr2d_list=[]
target_disparity_list=[]
gt_ds_list = []
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
corr2d_list.append(np.array(example.features.feature['corr2d'] .float_list .value))
target_disparity_list.append(np.array(example.features.feature['target_disparity'] .float_list .value[0]))
gt_ds_list.append(np.array(example.features.feature['gt_ds'] .float_list .value))
corr2d= np.array(corr2d_list)
target_disparity = np.array(target_disparity_list)
gt_ds = np.array(gt_ds_list)
return corr2d, target_disparity, gt_ds
def writeTFRewcordsImageTiles(img_path, tfr_filename): # test_set=False):
num_tiles = 242*324 # fixme
all_image_tiles = np.array(range(num_tiles))
corr_layers = ['hor-pairs', 'vert-pairs','diagm-pair', 'diago-pair']
img = ijt.imagej_tiff(img_path, corr_layers, all_image_tiles)
"""
Values read from correlation file, it now may differ from the COMBO-DSI:
1) The target disparities used for correlations are replaced if they are too far from the rig (GT) values and
replaced by interpolation from available neighbors. If there are no suitable neighbors, target disparity is
derived from the rig data by adding a random offset (specified in ImageJ plugin configuration ML section)
2) correlation is performed around the defined tiles extrapolating disparity. rig data may be 0 disparity,
0 strength if there is no rig data for those tiles. That means that such tiles can only be used as peripherals
i (now 5x5) clusters, not for the cluster centers where GT is needed.
"""
corr2d = img.corr2d.reshape((num_tiles,-1))
target_disparity = img.target_disparity.reshape((num_tiles,-1))
gt_ds = img.gt_ds.reshape((num_tiles,-1))
"""
Replace GT data with zero strength with nan, zero strength
nan2 = np.array((np.nan,0), dtype=np.float32)
gt_ds[np.where(gt_ds[:,1]==0)] = nan2
"""
if not '.tfrecords' in tfr_filename:
tfr_filename += '.tfrecords'
tfr_filename=tfr_filename.replace(' ','_')
try:
os.makedirs(os.path.dirname(tfr_filename))
except:
pass
writer = tf.python_io.TFRecordWriter(tfr_filename)
dtype_feature_corr2d = _dtype_feature(corr2d)
dtype_target_disparity = _dtype_feature(target_disparity)
dtype_feature_gt_ds = _dtype_feature(gt_ds)
for i in range(num_tiles):
x = corr2d[i].astype(np.float32)
y = target_disparity[i].astype(np.float32)
z = gt_ds[i].astype(np.float32)
d_feature = {'corr2d': dtype_feature_corr2d(x),
'target_disparity':dtype_target_disparity(y),
'gt_ds': dtype_feature_gt_ds(z)}
example = tf.train.Example(features=tf.train.Features(feature=d_feature))
writer.write(example.SerializeToString())
pass
writer.close()
sys.stdout.flush()
class ExploreData:
PATTERN = "*-DSI_COMBO.tiff"
# ML_DIR = "ml"
# ML_PATTERN = "*-ML_DATA*OFFS*.tiff"
# ML_PATTERN = "*-ML_DATA*MAIN*.tiff"
ML_PATTERN = "*-ML_DATA*MAIN-RND*.tiff"
# ML_PATTERN = "*-ML_DATA*MAIN.tiff"
# ML_PATTERN = "*-ML_DATA*OFFS-0.20000_0.20000.tiff"
"""
1527182801_296892-ML_DATARND-32B-O-FZ0.05-OFFS-0.20000_0.20000.tiff
"""
def getComboList(self, top_dir):
# patt = "*-DSI_COMBO.tiff"
tlist = []
for i in range(5):
pp = top_dir#) ,'**', patt) # works
for j in range (i):
pp = os.path.join(pp,'*')
pp = os.path.join(pp, ExploreData.PATTERN)
tlist += glob.glob(pp)
if (self.debug_level > 0):
print (pp+" "+str(len(tlist)))
if (self.debug_level > 0):
print("Found "+str(len(tlist))+" combo DSI files in "+top_dir+" :")
if (self.debug_level > 1):
print("\n".join(tlist))
return tlist
def loadComboFiles(self, tlist):
indx = 0
images = []
if (self.debug_level>2):
print(str(resource.getrusage(resource.RUSAGE_SELF)))
layers = ['disparity_rig','strength_rig','disparity_main']
for combo_file in tlist:
tiff = ijt.imagej_tiff(combo_file,layers)
if not indx:
images = np.empty((len(tlist), tiff.image.shape[0],tiff.image.shape[1],tiff.image.shape[2]), tiff.image.dtype)
images[indx] = tiff.image
if (self.debug_level>2):
print(str(indx)+": "+str(resource.getrusage(resource.RUSAGE_SELF)))
indx += 1
return images
def getHistogramDSI(
self,
list_rds,
disparity_bins = 1000,
strength_bins = 100,
disparity_min_drop = -0.1,
disparity_min_clip = -0.1,
disparity_max_drop = 100.0,
disparity_max_clip = 100.0,
strength_min_drop = 0.1,
strength_min_clip = 0.1,
strength_max_drop = 1.0,
strength_max_clip = 0.9,
max_main_offset = 0.0,
normalize = True,
no_histogram = False
):
good_tiles_list=[]
for combo_rds in list_rds:
good_tiles = np.empty((combo_rds.shape[0], combo_rds.shape[1],combo_rds.shape[2]), dtype=bool)
for ids in range (combo_rds.shape[0]): #iterate over all scenes ds[2][rows][cols]
ds = combo_rds[ids]
disparity = ds[...,0]
strength = ds[...,1]
good_tiles[ids] = disparity >= disparity_min_drop
good_tiles[ids] &= disparity <= disparity_max_drop
good_tiles[ids] &= strength >= strength_min_drop
good_tiles[ids] &= strength <= strength_max_drop
if max_main_offset > 0.0:
disparity_main = ds[...,2]
good_tiles[ids] &= disparity_main <= (disparity + max_main_offset)
good_tiles[ids] &= disparity_main >= (disparity - max_main_offset)
disparity = np.nan_to_num(disparity, copy = False) # to be able to multiply by 0.0 in mask | copy=False, then out=disparity all done in-place
strength = np.nan_to_num(strength, copy = False) # likely should never happen
np.clip(disparity, disparity_min_clip, disparity_max_clip, out = disparity)
np.clip(strength, strength_min_clip, strength_max_clip, out = strength)
good_tiles_list.append(good_tiles)
combo_rds = np.concatenate(list_rds)
hist, xedges, yedges = np.histogram2d( # xedges, yedges - just for debugging
x = combo_rds[...,1].flatten(),
y = combo_rds[...,0].flatten(),
bins= (strength_bins, disparity_bins),
range= ((strength_min_clip,strength_max_clip),(disparity_min_clip,disparity_max_clip)),
normed= normalize,
weights= np.concatenate(good_tiles_list).flatten())
for i, combo_rds in enumerate(list_rds):
for ids in range (combo_rds.shape[0]): #iterate over all scenes ds[2][rows][cols]
combo_rds[ids][...,1]*= good_tiles_list[i][ids]
return hist, xedges, yedges
def __init__(self,
topdir_train,
topdir_test,
ml_subdir,
max_main_offset = 2.0, # > 0.0 - do not use main camera tiles with offset more than this
debug_level = 0,
disparity_bins = 1000,
strength_bins = 100,
disparity_min_drop = -0.1,
disparity_min_clip = -0.1,
disparity_max_drop = 100.0,
disparity_max_clip = 100.0,
strength_min_drop = 0.1,
strength_min_clip = 0.1,
strength_max_drop = 1.0,
strength_max_clip = 0.9,
hist_sigma = 2.0, # Blur log histogram
hist_cutoff= 0.001 # of maximal
):
# file name
self.debug_level = debug_level
#self.testImageTiles()
self.max_main_offset = max_main_offset
self.disparity_bins = disparity_bins
self.strength_bins = strength_bins
self.disparity_min_drop = disparity_min_drop
self.disparity_min_clip = disparity_min_clip
self.disparity_max_drop = disparity_max_drop
self.disparity_max_clip = disparity_max_clip
self.strength_min_drop = strength_min_drop
self.strength_min_clip = strength_min_clip
self.strength_max_drop = strength_max_drop
self.strength_max_clip = strength_max_clip
self.hist_sigma = hist_sigma # Blur log histogram
self.hist_cutoff= hist_cutoff # of maximal
self.pre_log_offs = 0.001 # of histogram maximum
self.good_tiles = None
self.files_train = self.getComboList(topdir_train)
self.files_test = self.getComboList(topdir_test)
self.train_ds = self.loadComboFiles(self.files_train)
self.test_ds = self.loadComboFiles(self.files_test)
self.num_tiles = self.train_ds.shape[1]*self.train_ds.shape[2]
self.hist, xedges, yedges = self.getHistogramDSI(
list_rds = [self.train_ds,self.test_ds], # combo_rds,
disparity_bins = self.disparity_bins,
strength_bins = self.strength_bins,
disparity_min_drop = self.disparity_min_drop,
disparity_min_clip = self.disparity_min_clip,
disparity_max_drop = self.disparity_max_drop,
disparity_max_clip = self.disparity_max_clip,
strength_min_drop = self.strength_min_drop,
strength_min_clip = self.strength_min_clip,
strength_max_drop = self.strength_max_drop,
strength_max_clip = self.strength_max_clip,
max_main_offset = self.max_main_offset,
normalize = True,
no_histogram = False
)
log_offset = self.pre_log_offs * self.hist.max()
h_cutoff = hist_cutoff * self.hist.max()
lhist = np.log(self.hist + log_offset)
blurred_lhist = gaussian_filter(lhist, sigma = self.hist_sigma)
self.blurred_hist = np.exp(blurred_lhist) - log_offset
self.good_tiles = self.blurred_hist >= h_cutoff
self.blurred_hist *= self.good_tiles # set bad ones to zero
def exploreNeibs(self,
data_ds, # disparity/strength data for all files (train or test)
radius, # how far to look from center each side ( 1- 3x3, 2 - 5x5)
disp_thesh = 5.0): # reduce effective variance for higher disparities
"""
For each tile calculate difference between max and min among neighbors and number of qualifying neighbors (bad center is not removed)
data_ds may maismatch with the correlation files - correlation filas have data in extrapolated areas and replaced for large difference with GT
"""
disp_min = np.empty_like(data_ds[...,0], dtype = np.float)
disp_max = np.empty_like(disp_min, dtype = np.float)
tile_neibs = np.zeros_like(disp_min, dtype = np.int)
dmin = data_ds[...,0].min()
dmax = data_ds[...,0].max()
good_tiles = self.getBB(data_ds) >= 0
side = 2 * radius + 1
for nf, ds in enumerate(data_ds):
disp = ds[...,0]
height = disp.shape[0]
width = disp.shape[1]
bad_max = np.ones((height+side, width+side), dtype=float) * dmax
bad_min = np.ones((height+side, width+side), dtype=float) * dmin
good = np.zeros((height+side, width+side), dtype=int)
#Assign centers of the array, replace bad tiles with max/min (so they will not change min/max)
bad_max[radius:height+radius,radius:width+radius] = np.select([good_tiles[nf]],[disp],default = dmax)
bad_min[radius:height+radius,radius:width+radius] = np.select([good_tiles[nf]],[disp],default = dmin)
good [radius:height+radius,radius:width+radius] = good_tiles[nf]
disp_min [nf,...] = disp
disp_max [nf,...] = disp
tile_neibs[nf,...] = good_tiles[nf]
for offset_y in range(-radius, radius+1):
oy = offset_y+radius
for offset_x in range(-radius, radius+1):
ox = offset_x+radius
if offset_y or offset_x: # Skip center - already copied
np.minimum(disp_min[nf], bad_max[oy:oy+height, ox:ox+width], out=disp_min[nf])
np.maximum(disp_max[nf], bad_min[oy:oy+height, ox:ox+width], out=disp_max[nf])
tile_neibs[nf] += good[oy:oy+height, ox:ox+width]
pass
pass
pass
pass
#disp_thesh
disp_avar = disp_max - disp_min
disp_rvar = disp_avar * disp_thesh / np.maximum(disp_max, 0.001) # removing division by 0 error - those tiles will be anyway discarded
disp_var = np.select([disp_max >= disp_thesh, disp_max < disp_thesh],[disp_rvar,disp_avar])
return disp_var, tile_neibs
def assignBatchBins(self,
disp_bins,
str_bins,
files_per_scene = 5, # not used here, will be used when generating batches
min_batch_choices=10, # not used here, will be used when generating batches
max_batch_files = 10): # not used here, will be used when generating batches
"""
for each disparity/strength combination (self.disparity_bins * self.strength_bins = 1000*100) provide number of "large"
variable-size disparity/strength bin, or -1 if this disparity/strength combination does not seem right
"""
self.files_per_scene = files_per_scene
self.min_batch_choices=min_batch_choices
self.max_batch_files = max_batch_files
hist_to_batch = np.zeros((self.blurred_hist.shape[0],self.blurred_hist.shape[1]),dtype=int) #zeros_like?
hist_to_batch_multi = np.ones((self.blurred_hist.shape[0],self.blurred_hist.shape[1]),dtype=int) #zeros_like?
scale_hist= (disp_bins * str_bins)/self.blurred_hist.sum()
norm_b_hist = self.blurred_hist * scale_hist
disp_list = [] # last disparity hist
# disp_multi = [] # number of disp rows to fit
disp_run_tot = 0.0
disp_batch = 0
disp=0
num_batch_bins = disp_bins * str_bins
disp_hist = np.linspace(0, num_batch_bins, disp_bins+1)
batch_index = 0
num_members = np.zeros((num_batch_bins,),int)
while disp_batch < disp_bins:
#disp_multi.append(1)
# while (disp < self.disparity_bins):
# disp_target_tot =disp_hist[disp_batch+1]
disp_run_tot_new = disp_run_tot
disp0 = disp # start disaprity matching disp_run_tot
while (disp_run_tot_new < disp_hist[disp_batch+1]) and (disp < self.disparity_bins):
disp_run_tot_new += norm_b_hist[:,disp].sum()
disp+=1;
disp_multi = 1
while (disp_batch < (disp_bins - 1)) and (disp_run_tot_new >= disp_hist[disp_batch+2]):
disp_batch += 1 # only if large disp_bins and very high hist value
disp_multi += 1
# now disp_run_tot - before this batch disparity col
str_bins_corr = str_bins * disp_multi # if too narrow disparity column - multiply number of strength columns
str_bins_corr_last = str_bins_corr -1
str_hist = np.linspace(disp_run_tot, disp_run_tot_new, str_bins_corr + 1)
str_run_tot_new = disp_run_tot
# str_batch = 0
str_index=0
# wide_col = norm_b_hist[:,disp0:disp] #disp0 - first column, disp - last+ 1
#iterate in linescan along the column
for si in range(self.strength_bins):
for di in range(disp0, disp,1):
if norm_b_hist[si,di] > 0.0 :
str_run_tot_new += norm_b_hist[si,di]
# do not increment after last to avoid precision issues
if (batch_index < num_batch_bins) and (num_members[batch_index] > 0) and (str_index < str_bins_corr_last) and (str_run_tot_new > str_hist[str_index+1]):
batch_index += 1
str_index += 1
if batch_index < num_batch_bins :
hist_to_batch[si,di] = batch_index
num_members[batch_index] += 1
else:
pass
else:
hist_to_batch[si,di] = -1
batch_index += 1 # it was not incremented afterthe last in the column to avoid rounding error
disp_batch += 1
disp_run_tot = disp_run_tot_new
pass
self.hist_to_batch = hist_to_batch
return hist_to_batch
def getBB(self, data_ds):
"""
for each file, each tile get histogram index (or -1 for bad tiles)
"""
hist_to_batch = self.hist_to_batch
files_batch_list = []
disp_step = ( self.disparity_max_clip - self.disparity_min_clip )/ self.disparity_bins
str_step = ( self.strength_max_clip - self.strength_min_clip )/ self.strength_bins
bb = np.empty_like(data_ds[...,0],dtype=int)
for findx in range(data_ds.shape[0]):
ds = data_ds[findx]
gt = ds[...,1] > 0.0 # OK
db = (((ds[...,0] - self.disparity_min_clip)/disp_step).astype(int))*gt
sb = (((ds[...,1] - self.strength_min_clip)/ str_step).astype(int))*gt
np.clip(db, 0, self.disparity_bins-1, out = db)
np.clip(sb, 0, self.strength_bins-1, out = sb)
bb[findx] = (self.hist_to_batch[sb.reshape(self.num_tiles),db.reshape(self.num_tiles)]) .reshape(db.shape[0],db.shape[1]) + (gt -1)
return bb
def makeBatchLists(self,
data_ds = None, # (disparity,strength) per scene, per tile
disp_var = None, # difference between maximal and minimal disparity for each scene, each tile
disp_neibs = None, # number of valid tiles around each center tile (for 3x3 (radius = 1) - maximal is 9
min_var = None, # Minimal tile variance to include
max_var = None, # Maximal tile variance to include
scale_disp = 5.0,
min_neibs = None):# Minimal number of valid tiles to include
if data_ds is None:
data_ds = self.train_ds
hist_to_batch = self.hist_to_batch
num_batch_tiles = np.empty((data_ds.shape[0],self.hist_to_batch.max()+1),dtype = int)
bb = self.getBB(data_ds)
use_neibs = not ((disp_var is None) or (disp_neibs is None) or (min_var is None) or (max_var is None) or (min_neibs is None))
list_of_file_lists=[]
for findx in range(data_ds.shape[0]):
foffs = findx * self.num_tiles
lst = []
for i in range (self.hist_to_batch.max()+1):
lst.append([])
# bb1d = bb[findx].reshape(self.num_tiles)
if use_neibs:
disp_var_tiles = disp_var[findx].reshape(self.num_tiles)
disp_neibs_tiles = disp_neibs[findx].reshape(self.num_tiles)
for n, indx in enumerate(bb[findx].reshape(self.num_tiles)):
if indx >= 0:
if use_neibs:
# disp_var_tiles = disp_var[findx].reshape(self.num_tiles)
# disp_neibs_tiles = disp_neibs[findx].reshape(self.num_tiles)
if disp_neibs_tiles[n] < min_neibs:
continue # too few neighbors
if not disp_var_tiles[n] >= min_var:
continue #too small variance
if not disp_var_tiles[n] < max_var:
continue #too large variance
lst[indx].append(foffs + n)
lst_arr=[]
for i,l in enumerate(lst):
# lst_arr.append(np.array(l,dtype = int))
lst_arr.append(l)
num_batch_tiles[findx,i] = len(l)
list_of_file_lists.append(lst_arr)
self.list_of_file_lists= list_of_file_lists
self.num_batch_tiles = num_batch_tiles
return list_of_file_lists, num_batch_tiles
#todo: only use other files if there are no enough choices in the main file!
def augmentBatchFileIndices(self,
seed_index,
min_choices=None,
max_files = None,
set_ds = None
):
if min_choices is None:
min_choices = self.min_batch_choices
if max_files is None:
max_files = self.max_batch_files
if set_ds is None:
set_ds = self.train_ds
full_num_choices = self.num_batch_tiles[seed_index].copy()
flist = [seed_index]
all_choices = list(range(self.num_batch_tiles.shape[0]))
all_choices.remove(seed_index)
for _ in range (max_files-1):
if full_num_choices.min() >= min_choices:
break
findx = np.random.choice(all_choices)
flist.append(findx)
all_choices.remove(findx)
full_num_choices += self.num_batch_tiles[findx]
file_tiles_sparse = [[] for _ in set_ds] #list of empty lists for each train scene (will be sparse)
for nt in range(self.num_batch_tiles.shape[1]): #number of tiles per batch (not counting ml file variant) // radius2 - 40
tl = []
nchoices = 0
for findx in flist:
if (len(self.list_of_file_lists[findx][nt])):
tl.append(self.list_of_file_lists[findx][nt])
nchoices+= self.num_batch_tiles[findx][nt]
if nchoices >= min_choices: # use minimum of extra files
break;
while len(tl)==0:
print("** BUG! could not find a single candidate from files ",flist," for cell ",nt)
print("trying to use some other cell")
nt1 = np.random.randint(0,self.num_batch_tiles.shape[1])
for findx in flist:
if (len(self.list_of_file_lists[findx][nt1])):
tl.append(self.list_of_file_lists[findx][nt1])
nchoices+= self.num_batch_tiles[findx][nt1]
if nchoices >= min_choices: # use minimum of extra files
break;
tile = np.random.choice(np.concatenate(tl))
"""
Traceback (most recent call last):
File "explore_data2.py", line 1041, in <module>
ex_data.writeTFRewcordsEpoch(fpath, ml_list = ml_list_train, files_list = ex_data.files_train, set_ds= ex_data.train_ds, radius = RADIUS)
File "explore_data2.py", line 761, in writeTFRewcordsEpoch
corr2d_batch, target_disparity_batch, gt_ds_batch = ex_data.prepareBatchData(ml_list, seed_index, min_choices=None, max_files = None, ml_num = None, set_ds = set_ds, radius = radius)
File "explore_data2.py", line 556, in prepareBatchData
flist,tiles = self.augmentBatchFileIndices(seed_index, min_choices, max_files, set_ds)
File "explore_data2.py", line 494, in augmentBatchFileIndices
tile = np.random.choice(np.concatenate(tl))
ValueError: need at least one array to concatenate
"""
# print (nt, tile, tile//self.num_tiles, tile % self.num_tiles)
if not type (tile) is np.int64:
print("tile=",tile)
file_tiles_sparse[tile//self.num_tiles].append(tile % self.num_tiles)
file_tiles = []
for findx in flist:
file_tiles.append(np.sort(np.array(file_tiles_sparse[findx],dtype=int)))
return flist, file_tiles # file indices, list if tile indices for each file
def getMLList(self, ml_subdir, flist):
ml_list = []
for fn in flist:
ml_patt = os.path.join(os.path.dirname(fn), ml_subdir, ExploreData.ML_PATTERN)
ml_list.append(glob.glob(ml_patt))
## self.ml_list = ml_list
return ml_list
def getBatchData(
self,
flist,
tiles,
ml_list,
ml_num = None ): # 0 - use all ml files for the scene, >0 select random number
if ml_num is None:
ml_num = self.files_per_scene
ml_all_files = []
for findx in flist:
mli = list(range(len(ml_list[findx])))
if (ml_num > 0) and (ml_num < len(mli)):
mli_left = mli
mli = []
for _ in range(ml_num):
ml = np.random.choice(mli_left)
mli.append(ml)
mli_left.remove(ml)
ml_files = []
for ml_index in mli:
ml_files.append(ml_list[findx][ml_index])
ml_all_files.append(ml_files)
return ml_all_files
def prepareBatchData(self,
ml_list,
seed_index,
min_choices=None,
max_files = None,
ml_num = None,
set_ds = None,
radius = 0):
"""
set_ds (from COMBO_DSI) is used to select tile clusters, exported values come from correlation files.
target_disparity for correlation files may be different than data_ds - replaced dureing ImageJ plugin
export if main camera and the rig (GT) converged on different objects fro the same tile
"""
if min_choices is None:
min_choices = self.min_batch_choices
if max_files is None:
max_files = self.max_batch_files
if ml_num is None:
ml_num = self.files_per_scene
if set_ds is None:
set_ds = self.train_ds
tiles_in_sample = (2 * radius + 1) * (2 * radius + 1)
height = set_ds.shape[1]
width = set_ds.shape[2]
width_m1 = width-1
height_m1 = height-1
# set_ds = [self.train_ds, self.test_ds][test_set]
corr_layers = ['hor-pairs', 'vert-pairs','diagm-pair', 'diago-pair']
flist,tiles = self.augmentBatchFileIndices(seed_index, min_choices, max_files, set_ds)
# ml_all_files = self.getBatchData(flist, tiles, ml_list, ml_num) # 0 - use all ml files for the scene, >0 select random number
ml_all_files = self.getBatchData(flist, tiles, ml_list, 0) # ml_num) # 0 - use all ml files for the scene, >0 select random number
if self.debug_level > 1:
print ("==============",seed_index, flist)
for i, findx in enumerate(flist):
print(i,"\n".join(ml_all_files[i]))
print(tiles[i])
total_tiles = 0
for i, t in enumerate(tiles):
## total_tiles += len(t)*len(ml_all_files[i]) # tiles per scene * offset files per scene
total_tiles += len(t) # tiles per scene * offset files per scene
if self.debug_level > 1:
print("Tiles in the batch=",total_tiles)
corr2d_batch = None # np.empty((total_tiles, len(corr_layers),81))
gt_ds_batch = np.empty((total_tiles * tiles_in_sample, 2), dtype=float)
target_disparity_batch = np.empty((total_tiles * tiles_in_sample, ), dtype=float)
start_tile = 0
for nscene, scene_files in enumerate(ml_all_files):
'''
Create tiles list including neighbors
'''
full_tiles = np.empty([len(tiles[nscene]) * tiles_in_sample], dtype = int)
indx = 0;
for i, nt in enumerate(tiles[nscene]):
ty = nt // width
tx = nt % width
for dy in range (-radius, radius+1):
y = np.clip(ty+dy,0,height_m1)
for dx in range (-radius, radius+1):
x = np.clip(tx+dx,0,width_m1)
full_tiles[indx] = y * width + x
indx += 1
"""
Assign tiles to several correlation files
"""
file_tiles = []
file_indices = []
for f in scene_files:
file_tiles.append([])
num_scene_files = len(scene_files)
for t in full_tiles:
fi = np.random.randint(0, num_scene_files)
file_tiles[fi].append(t)
file_indices.append(fi)
corr2d_list = []
target_disparity_list = []
gt_ds_list = []
for fi, path in enumerate (scene_files):
img = ijt.imagej_tiff(path, corr_layers, tile_list=file_tiles[fi])
corr2d_list.append (img.corr2d)
target_disparity_list.append(img.target_disparity)
gt_ds_list.append (img.gt_ds)
img_indices = [0] * len(scene_files)
for i, fi in enumerate(file_indices):
ti = img_indices[fi]
img_indices[fi] += 1
if corr2d_batch is None:
corr2d_batch = np.empty((total_tiles * tiles_in_sample, len(corr_layers), corr2d_list[fi].shape[-1]))
gt_ds_batch [start_tile] = gt_ds_list[fi][ti]
target_disparity_batch [start_tile] = target_disparity_list[fi][ti]
corr2d_batch [start_tile] = corr2d_list[fi][ti]
start_tile += 1
"""
Sometimes get bad tile in ML file that was not bad in COMBO-DSI
Need to recover
np.argwhere(np.isnan(target_disparity_batch))
"""
bad_tiles = np.argwhere(np.isnan(target_disparity_batch))
if (len(bad_tiles)>0):
print ("*** Got %d bad tiles in a batch, no code to replace :-("%(len(bad_tiles)))
# for now - just repeat some good tile
"""
for ibt in bad_tiles:
while np.isnan(target_disparity_batch[ibt]):
irt = np.random.randint(0,total_tiles)
if not np.isnan(target_disparity_batch[irt]):
target_disparity_batch[ibt] = target_disparity_batch[irt]
corr2d_batch[ibt] = corr2d_batch[irt]
gt_ds_batch[ibt] = gt_ds_batch[irt]
break
print (" done replacing")
"""
self.corr2d_batch = corr2d_batch
self.target_disparity_batch = target_disparity_batch
self.gt_ds_batch = gt_ds_batch
return corr2d_batch, target_disparity_batch, gt_ds_batch
def writeTFRewcordsEpoch(self, tfr_filename, ml_list, files_list = None, set_ds= None, radius = 0, num_scenes = None): # test_set=False):
# train_filename = 'train.tfrecords' # address to save the TFRecords file
# open the TFRecords file
if not '.tfrecords' in tfr_filename:
tfr_filename += '.tfrecords'
tfr_filename=tfr_filename.replace(' ','_')
if files_list is None:
files_list = self.files_train
if set_ds is None:
set_ds = self.train_ds
try:
os.makedirs(os.path.dirname(tfr_filename))
print("Created directory "+os.path.dirname(tfr_filename))
except:
print("Directory "+os.path.dirname(tfr_filename)+" already exists, using it")
pass
#skip writing if file exists - it will be possible to continue or run several instances
if os.path.exists(tfr_filename):
print(tfr_filename+" already exists, skipping generation. Please remove and re-run this program if you want to regenerate the file")
return
writer = tf.python_io.TFRecordWriter(tfr_filename)
#$ files_list = [self.files_train, self.files_test][test_set]
if num_scenes is None:
num_scenes = len(files_list)
seed_list = np.arange(num_scenes) % len(files_list)
# seed_list = np.arange(len(files_list))
np.random.shuffle(seed_list)
cluster_size = (2 * radius + 1) * (2 * radius + 1)
for nscene, seed_index in enumerate(seed_list):
corr2d_batch, target_disparity_batch, gt_ds_batch = ex_data.prepareBatchData(
ml_list,
seed_index,
min_choices=None,
max_files = None,
ml_num = None,
set_ds = set_ds,
radius = radius)
#shuffles tiles in a batch
# tiles_in_batch = len(target_disparity_batch)
tiles_in_batch = corr2d_batch.shape[0]
clusters_in_batch = tiles_in_batch // cluster_size
# permut = np.random.permutation(tiles_in_batch)
permut = np.random.permutation(clusters_in_batch)
corr2d_clusters = corr2d_batch. reshape((clusters_in_batch,-1))
target_disparity_clusters = target_disparity_batch.reshape((clusters_in_batch,-1))
gt_ds_clusters = gt_ds_batch. reshape((clusters_in_batch,-1))
# corr2d_batch_shuffled = corr2d_batch[permut].reshape((corr2d_batch.shape[0], corr2d_batch.shape[1]*corr2d_batch.shape[2]))
# target_disparity_batch_shuffled = target_disparity_batch[permut].reshape((tiles_in_batch,1))
# gt_ds_batch_shuffled = gt_ds_batch[permut]
corr2d_batch_shuffled = corr2d_clusters[permut]. reshape((tiles_in_batch, -1))
target_disparity_batch_shuffled = target_disparity_clusters[permut].reshape((tiles_in_batch, -1))
gt_ds_batch_shuffled = gt_ds_clusters[permut]. reshape((tiles_in_batch, -1))
if nscene == 0:
dtype_feature_corr2d = _dtype_feature(corr2d_batch_shuffled)
dtype_target_disparity = _dtype_feature(target_disparity_batch_shuffled)
dtype_feature_gt_ds = _dtype_feature(gt_ds_batch_shuffled)
for i in range(tiles_in_batch):
x = corr2d_batch_shuffled[i].astype(np.float32)
y = target_disparity_batch_shuffled[i].astype(np.float32)
z = gt_ds_batch_shuffled[i].astype(np.float32)
d_feature = {'corr2d': dtype_feature_corr2d(x),
'target_disparity':dtype_target_disparity(y),
'gt_ds': dtype_feature_gt_ds(z)}
example = tf.train.Example(features=tf.train.Features(feature=d_feature))
writer.write(example.SerializeToString())
if (self.debug_level > 0):
print_time("Scene %d (%d) of %d -> %s"%(nscene, seed_index, len(seed_list), tfr_filename))
writer.close()
sys.stdout.flush()
def showVariance(self,
rds_list, # list of disparity/strength files, suchas training, testing
disp_var_list, # list of disparity variance files. Same shape(but last dim) as rds_list
num_neibs_list, # list of number of tile neibs files. Same shape(but last dim) as rds_list
variance_min = 0.0,
variance_max = 1.5,
neibs_min = 9,
#Same parameters as for the histogram
# disparity_bins = 1000,
# strength_bins = 100,
# disparity_min_drop = -0.1,
# disparity_min_clip = -0.1,
# disparity_max_drop = 100.0,
# disparity_max_clip = 100.0,
# strength_min_drop = 0.1,
# strength_min_clip = 0.1,
# strength_max_drop = 1.0,
# strength_max_clip = 0.9,
normalize = False): # True):
good_tiles_list=[]
for nf, combo_rds in enumerate(rds_list):
disp_var = disp_var_list[nf]
num_neibs = num_neibs_list[nf]
good_tiles = np.empty((combo_rds.shape[0], combo_rds.shape[1],combo_rds.shape[2]), dtype=bool)
for ids in range (combo_rds.shape[0]): #iterate over all scenes ds[2][rows][cols]
ds = combo_rds[ids]
disparity = ds[...,0]
strength = ds[...,1]
variance = disp_var[ids]
neibs = num_neibs[ids]
good_tiles[ids] = disparity >= self.disparity_min_drop
good_tiles[ids] &= disparity <= self.disparity_max_drop
good_tiles[ids] &= strength >= self.strength_min_drop
good_tiles[ids] &= strength <= self.strength_max_drop
good_tiles[ids] &= neibs >= neibs_min
good_tiles[ids] &= variance >= variance_min
good_tiles[ids] &= variance < variance_max
disparity = np.nan_to_num(disparity, copy = False) # to be able to multiply by 0.0 in mask | copy=False, then out=disparity all done in-place
strength = np.nan_to_num(strength, copy = False) # likely should never happen
# np.clip(disparity, self.disparity_min_clip, self.disparity_max_clip, out = disparity)
# np.clip(strength, self.strength_min_clip, self.strength_max_clip, out = strength)
good_tiles_list.append(good_tiles)
combo_rds = np.concatenate(rds_list)
hist, xedges, yedges = np.histogram2d( # xedges, yedges - just for debugging
x = combo_rds[...,1].flatten(),
y = combo_rds[...,0].flatten(),
bins= (self.strength_bins, self.disparity_bins),
range= ((self.strength_min_clip,self.strength_max_clip),(self.disparity_min_clip,self.disparity_max_clip)),
normed= normalize,
weights= np.concatenate(good_tiles_list).flatten())
mytitle = "Disparity_Strength variance histogram"
fig = plt.figure()
fig.canvas.set_window_title(mytitle)
fig.suptitle("Min variance = %f, max variance = %f, min neibs = %d"%(variance_min, variance_max, neibs_min))
# plt.imshow(hist, vmin=0, vmax=.1 * hist.max())#,vmin=-6,vmax=-2) # , vmin=0, vmax=.01)
plt.imshow(hist, vmin=0.0, vmax=300.0)#,vmin=-6,vmax=-2) # , vmin=0, vmax=.01)
plt.colorbar(orientation='horizontal') # location='bottom')
# for i, combo_rds in enumerate(rds_list):
# for ids in range (combo_rds.shape[0]): #iterate over all scenes ds[2][rows][cols]
# combo_rds[ids][...,1]*= good_tiles_list[i][ids]
# return hist, xedges, yedges
#MAIN
if __name__ == "__main__":
try:
topdir_train = sys.argv[1]
except IndexError:
# topdir_train = "/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/train"#test" #all/"
topdir_train = "/home/eyesis/x3d_data/data_sets/train_mlr32_18a"
try:
topdir_test = sys.argv[2]
except IndexError:
# topdir_test = "/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/test"#test" #all/"
topdir_test = "/home/eyesis/x3d_data/data_sets/test_mlr32_18a"
try:
pathTFR = sys.argv[3]
except IndexError:
# pathTFR = "/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data_3x3b" #no trailing "/"
# pathTFR = "/home/eyesis/x3d_data/data_sets/tf_data_5x5" #no trailing "/"
pathTFR = "/home/eyesis/x3d_data/data_sets/tf_data_5x5_main_7" #no trailing "/"
try:
ml_subdir = sys.argv[4]
except IndexError:
# ml_subdir = "ml"
# ml_subdir = "mlr32_18a"
ml_subdir = "mlr32_18c"
# pathTFR = "/mnt/dde6f983-d149-435e-b4a2-88749245cc6c/home/eyesis/x3d_data/data_sets/tf_data_3x3b" #no trailing "/"
# test_corr = '/home/eyesis/x3d_data/models/var_main/www/html/x3domlet/models/all-clean/overlook/1527257933_150165/v04/mlr32_18a/1527257933_150165-ML_DATA-32B-O-FZ0.05-MAIN.tiff' # overlook
# test_corr = '/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527256816_150165/v02/mlr32_18a/1527256816_150165-ML_DATA-32B-O-FZ0.05-MAIN.tiff' # State Street
# test_corr = '/home/eyesis/x3d_data/models/dsi_combo_and_ml_all/state_street/1527256858_150165/v01/mlr32_18a/1527256858_150165-ML_DATA-32B-O-FZ0.05-MAIN.tiff' # State Street
"""
test_corrs = [
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527257933_150165/v04/mlr32_18a/1527257933_150165-ML_DATA-32B-O-FZ0.05-MAIN.tiff', # overlook
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527256816_150165/v02/mlr32_18a/1527256816_150165-ML_DATA-32B-O-FZ0.05-MAIN.tiff', # State Street
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527256858_150165/v01/mlr32_18a/1527256858_150165-ML_DATA-32B-O-FZ0.05-MAIN.tiff', # State Street
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527182802_096892/v02/mlr32_18a/1527182802_096892-ML_DATA-32B-O-FZ0.05-MAIN.tiff', # near plane"
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527182805_096892/v02/mlr32_18a/1527182805_096892-ML_DATA-32B-O-FZ0.05-MAIN.tiff', # medium plane"
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527182810_096892/v02/mlr32_18a/1527182810_096892-ML_DATA-32B-O-FZ0.05-MAIN.tiff', # far plane
]
test_corrs = [
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527257933_150165/v04/mlr32_18c/1527257933_150165-ML_DATA-32B-O-FZ0.05-MAIN.tiff', # overlook
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527256816_150165/v02/mlr32_18c/1527256816_150165-ML_DATA-32B-O-FZ0.05-MAIN.tiff', # State Street
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527256858_150165/v01/mlr32_18c/1527256858_150165-ML_DATA-32B-O-FZ0.05-MAIN.tiff', # State Street
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527182802_096892/v02/mlr32_18c/1527182802_096892-ML_DATA-32B-O-FZ0.05-MAIN.tiff', # near plane"
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527182805_096892/v02/mlr32_18c/1527182805_096892-ML_DATA-32B-O-FZ0.05-MAIN.tiff', # medium plane"
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527182810_096892/v02/mlr32_18c/1527182810_096892-ML_DATA-32B-O-FZ0.05-MAIN.tiff', # far plane
]
"""
# These images are made with large random offset
test_corrs = [
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527257933_150165/v04/mlr32_18c/1527257933_150165-ML_DATA-32B-O-FZ0.05-MAIN-RND2.00000.tiff', # overlook
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527256816_150165/v02/mlr32_18c/1527256816_150165-ML_DATA-32B-O-FZ0.05-MAIN-RND2.00000.tiff', # State Street
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527256858_150165/v01/mlr32_18c/1527256858_150165-ML_DATA-32B-O-FZ0.05-MAIN-RND2.00000.tiff', # State Street
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527182802_096892/v02/mlr32_18c/1527182802_096892-ML_DATA-32B-O-FZ0.05-MAIN-RND2.00000.tiff', # near plane"
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527182805_096892/v02/mlr32_18c/1527182805_096892-ML_DATA-32B-O-FZ0.05-MAIN-RND2.00000.tiff', # medium plane"
'/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527182810_096892/v02/mlr32_18c/1527182810_096892-ML_DATA-32B-O-FZ0.05-MAIN-RND2.00000.tiff', # far plane
]
#1527257933_150165-ML_DATA-32B-O-FZ0.05-MAIN-RND2.00000.tiff
#/home/eyesis/x3d_data/data_sets/test_mlr32_18a/1527257933_150165/v04/mlr32_18c/1527257933_150165-ML_DATA-32B-O-FZ0.05-MAIN.tiff
#Parameters to generate neighbors data. Set radius to 0 to generate single-tile
TEST_SAME_LENGTH_AS_TRAIN = True # make test to have same number of entries as train ones
RADIUS = 2 # 5x5
MIN_NEIBS = (2 * RADIUS + 1) * (2 * RADIUS + 1) # All tiles valid == 9
VARIANCE_THRESHOLD = 0.4 # 1.5
VARIANCE_SCALE_DISPARITY = 5.0 #Scale variance if average is above this
NUM_TRAIN_SETS = 32 # 8
if RADIUS == 0:
BATCH_DISP_BINS = 50 # 1000 * 1
BATCH_STR_BINS = 20 # 10
elif RADIUS == 1:
BATCH_DISP_BINS = 15 # 120 * 9
BATCH_STR_BINS = 8
else: # RADIUS = 2
BATCH_DISP_BINS = 10 # 40 * 25
BATCH_STR_BINS = 4
train_filenameTFR = pathTFR+"/train"
test_filenameTFR = pathTFR+"/test"
# disp_bins = 20,
# str_bins=10)
# corr2d, target_disparity, gt_ds = readTFRewcordsEpoch(train_filenameTFR)
# print_time("Read %d tiles"%(corr2d.shape[0]))
# exit (0)
ex_data = ExploreData(
topdir_train = topdir_train,
topdir_test = topdir_test,
ml_subdir = ml_subdir,
debug_level = 1, #3, ##0, #3,
disparity_bins = 200, #1000,
strength_bins = 100,
disparity_min_drop = -0.1,
disparity_min_clip = -0.1,
disparity_max_drop = 20.0, #100.0,
disparity_max_clip = 20.0, #100.0,
strength_min_drop = 0.1,
strength_min_clip = 0.1,
strength_max_drop = 1.0,
strength_max_clip = 0.9,
hist_sigma = 2.0, # Blur log histogram
hist_cutoff= 0.001) # of maximal
mytitle = "Disparity_Strength histogram"
fig = plt.figure()
fig.canvas.set_window_title(mytitle)
fig.suptitle(mytitle)
# plt.imshow(lhist,vmin=-6,vmax=-2) # , vmin=0, vmax=.01)
plt.imshow(ex_data.blurred_hist, vmin=0, vmax=.1 * ex_data.blurred_hist.max())#,vmin=-6,vmax=-2) # , vmin=0, vmax=.01)
plt.colorbar(orientation='horizontal') # location='bottom')
hist_to_batch = ex_data.assignBatchBins(
disp_bins = BATCH_DISP_BINS,
str_bins = BATCH_STR_BINS)
bb_display = hist_to_batch.copy()
bb_display = ( 1+ (bb_display % 2) + 2 * ((bb_display % 20)//10)) * (hist_to_batch > 0) #).astype(float)
fig2 = plt.figure()
fig2.canvas.set_window_title("Batch indices")
fig2.suptitle("Batch index for each disparity/strength cell")
plt.imshow(bb_display) #, vmin=0, vmax=.1 * ex_data.blurred_hist.max())#,vmin=-6,vmax=-2) # , vmin=0, vmax=.01)
""" prepare test dataset """
for test_corr in test_corrs:
scene = os.path.basename(test_corr)[:17]
scene_version= os.path.basename(os.path.dirname(os.path.dirname(test_corr)))
fname =scene+'-'+scene_version
img_filenameTFR = os.path.join(pathTFR,'img',fname)
print_time("Saving test image %s as tiles..."%(img_filenameTFR),end = " ")
writeTFRewcordsImageTiles(test_corr, img_filenameTFR)
print_time("Done")
pass
if (RADIUS > 0):
disp_var_test, num_neibs_test = ex_data.exploreNeibs(ex_data.test_ds, RADIUS, VARIANCE_SCALE_DISPARITY)
disp_var_train, num_neibs_train = ex_data.exploreNeibs(ex_data.train_ds, RADIUS, VARIANCE_SCALE_DISPARITY)
# show varinace histogram
# for var_thresh in [0.1, 1.0, 1.5, 2.0, 5.0]:
for var_thresh in [1.5]:
ex_data.showVariance(
rds_list = [ex_data.train_ds, ex_data.test_ds], # list of disparity/strength files, suchas training, testing
disp_var_list = [disp_var_train, disp_var_test], # list of disparity variance files. Same shape(but last dim) as rds_list
num_neibs_list = [num_neibs_train, num_neibs_test], # list of number of tile neibs files. Same shape(but last dim) as rds_list
variance_min = 0.0,
variance_max = var_thresh,
neibs_min = MIN_NEIBS)
ex_data.showVariance(
rds_list = [ex_data.train_ds, ex_data.test_ds], # list of disparity/strength files, suchas training, testing
disp_var_list = [disp_var_train, disp_var_test], # list of disparity variance files. Same shape(but last dim) as rds_list
num_neibs_list = [num_neibs_train, num_neibs_test], # list of number of tile neibs files. Same shape(but last dim) as rds_list
variance_min = var_thresh,
variance_max = 1000.0,
neibs_min = MIN_NEIBS)
pass
pass