-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_qcds_graph_01.py
244 lines (203 loc) · 8.87 KB
/
infer_qcds_graph_01.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python3
__copyright__ = "Copyright 2018, Elphel, Inc."
__license__ = "GPL-3.0+"
__email__ = "andrey@elphel.com"
'''
** Kind of obsolete now, can be used for testing **
Just inference, currently uses /data_ssd/data_sets/tf_data_5x5_main_13_heur/inference/
'''
import os
import sys
import numpy as np
import time
import shutil
##import qcstereo_network
import qcstereo_functions as qsf
import tensorflow as tf
#from tensorflow.python.ops import resource_variable_ops
#tf.ResourceVariable = resource_variable_ops.ResourceVariable
qsf.TIME_START = time.time()
qsf.TIME_LAST = qsf.TIME_START
IMG_WIDTH = 324 # tiles per image row
DEBUG_LEVEL= 1
try:
conf_file = sys.argv[1]
except IndexError:
print("Configuration path is required as a first argument. Optional second argument specifies root directory for data files")
exit(1)
try:
root_dir = sys.argv[2]
except IndexError:
root_dir = os.path.dirname(conf_file)
print ("Configuration file: " + conf_file)
parameters, dirs, files, _ = qsf.parseXmlConfig(conf_file, root_dir)
"""
Temporarily for backward compatibility
"""
if not "SLOSS_CLIP" in parameters:
parameters['SLOSS_CLIP'] = 0.5
print ("Old config, setting SLOSS_CLIP=", parameters['SLOSS_CLIP'])
"""
Defined in config file
"""
TILE_SIDE, TILE_LAYERS, TWO_TRAINS, NET_ARCH1, NET_ARCH2 = [None]*5
ABSOLUTE_DISPARITY,SYM8_SUB, WLOSS_LAMBDA, SLOSS_LAMBDA, SLOSS_CLIP = [None]*5
SPREAD_CONVERGENCE, INTER_CONVERGENCE, HOR_FLIP, DISP_DIFF_CAP, DISP_DIFF_SLOPE = [None]*5
CLUSTER_RADIUS = None
PARTIALS_WEIGHTS, MAX_IMGS_IN_MEM, MAX_FILES_PER_GROUP, BATCH_WEIGHTS, ONLY_TILE = [None] * 5
USE_CONFIDENCE, WBORDERS_ZERO, EPOCHS_TO_RUN, FILE_UPDATE_EPOCHS = [None] * 4
LR600,LR400,LR200,LR100,LR = [None]*5
SHUFFLE_FILES, EPOCHS_FULL_TEST, SAVE_TIFFS = [None] * 3
CHECKPOINT_PERIOD = None
TRAIN_BUFFER_GPU, TRAIN_BUFFER_CPU = [None]*2
TEST_TITLES = None
USE_SPARSE_ONLY = True
LOGFILE="results-infer.txt"
"""
Next gets globals from the config file
"""
globals().update(parameters)
WIDTH = 324
HEIGHT = 242
TILE_SIZE = TILE_SIDE* TILE_SIDE # == 81
FEATURES_PER_TILE = TILE_LAYERS * TILE_SIZE# == 324
BATCH_SIZE = ([1,2][TWO_TRAINS])*2*1000//25 # == 80 Each batch of tiles has balanced D/S tiles, shuffled batches but not inside batches
SUFFIX=(str(NET_ARCH1)+'-'+str(NET_ARCH2)+
(["R","A"][ABSOLUTE_DISPARITY]) +
(["NS","S8"][SYM8_SUB])+
"WLAM"+str(WLOSS_LAMBDA)+
"SLAM"+str(SLOSS_LAMBDA)+
"SCLP"+str(SLOSS_CLIP)+
(['_nG','_G'][SPREAD_CONVERGENCE])+
(['_nI','_I'][INTER_CONVERGENCE]) +
(['_nHF',"_HF"][HOR_FLIP]) +
('_CP'+str(DISP_DIFF_CAP)) +
('_S'+str(DISP_DIFF_SLOPE))
)
##NN_LAYOUT1 = qcstereo_network.NN_LAYOUTS[NET_ARCH1]
##NN_LAYOUT2 = qcstereo_network.NN_LAYOUTS[NET_ARCH2]
# Tiff export slice labels
SLICE_LABELS = ["nn_out_ext","hier_out_ext","gt_disparity","gt_strength"]#,
# "cutcorn_cost_nw","cutcorn_cost",
# "gt-avg_dist","avg8_disp","gt_disp","out-avg"]
##############################################################################
cluster_size = (2 * CLUSTER_RADIUS + 1) * (2 * CLUSTER_RADIUS + 1)
center_tile_index = 2 * CLUSTER_RADIUS * (CLUSTER_RADIUS + 1)
qsf.prepareFiles(dirs,
files,
suffix = SUFFIX)
"""
Next is tag for pb (pb == protocol buffer) model
"""
#PB_TAGS = ["model_pb"]
print ("Copying config files to results directory:\n ('%s' -> '%s')"%(conf_file,dirs['result']))
try:
os.makedirs(dirs['result'])
except:
pass
shutil.copy2(conf_file,dirs['result'])
LOGPATH = os.path.join(dirs['result'],LOGFILE)
image_data = qsf.initImageData( # just use image_data[0]
files = files,
max_imgs = MAX_IMGS_IN_MEM,
cluster_radius = 0, # CLUSTER_RADIUS,
tile_layers = TILE_LAYERS,
tile_side = TILE_SIDE,
width = IMG_WIDTH,
replace_nans = True,
infer = True,
keep_gt = True) # to generate same output files
cluster_radius = CLUSTER_RADIUS
ROOT_PATH = './attic/infer_qcds_graph'+SUFFIX+"/" # for tensorboard
try:
os.makedirs(os.path.dirname(files['inference']))
print ("Created directory ",os.path.dirname(files['inference']))
except:
pass
with tf.Session() as sess:
# Actually, refresh all the time and have an extra script to restore from it.
# use_Saved_Model = False
#if os.path.isdir(dirs['exportdir']):
# # check if dir contains "Saved Model" model
# use_saved_model = tf.saved_model.loader.maybe_saved_model_directory(dirs['exportdir'])
#if use_saved_model:
# print("Model restore: using Saved_Model model MetaGraph protocol buffer")
# meta_graph_source = tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], dirs['exportdir'])
#else:
meta_graph_source = files["inference"]+'.meta'
print("Model restore: using conventionally saved model, but saving Saved Model for the next run")
print("MetaGraph source = "+str(meta_graph_source))
infer_saver = tf.train.import_meta_graph(meta_graph_source)
graph=tf.get_default_graph()
ph_corr2d = graph.get_tensor_by_name('ph_corr2d:0')
ph_target_disparity = graph.get_tensor_by_name('ph_target_disparity:0')
ph_ntile = graph.get_tensor_by_name('ph_ntile:0')
ph_ntile_out = graph.get_tensor_by_name('ph_ntile_out:0')
stage1done = graph.get_tensor_by_name('Disparity_net/stage1done:0') #<tf.Operation 'Siam_net/stage1done' type=Const>,
stage2_out_sparse = graph.get_tensor_by_name('Disparity_net/stage2_out_sparse:0')#not found
if not USE_SPARSE_ONLY: #Does it reduce the graph size?
stage2_out_full = graph.get_tensor_by_name('Disparity_net/stage2_out_full:0')
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
infer_saver.restore(sess, files["inference"])
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter(ROOT_PATH, sess.graph)
lf = None
if LOGPATH:
lf=open(LOGPATH,"w") #overwrite previous (or make it "a"?
for nimg,_ in enumerate(image_data):
dataset_img = qsf.readImageData(
image_data = image_data,
files = files,
indx = nimg,
cluster_radius = 0, # CLUSTER_RADIUS,
tile_layers = TILE_LAYERS,
tile_side = TILE_SIDE,
width = IMG_WIDTH,
replace_nans = True,
infer = True,
keep_gt = True) # to generate same output files
img_corr2d = dataset_img['corr2d'] # (?,324)
img_target = dataset_img['target_disparity'] # (?,1)
img_ntile = dataset_img['ntile'].reshape([-1]) # (?) - 0...78k int32
#run first stage network
qsf.print_time("Running inferred model, stage1", end=" ")
_ = sess.run([stage1done],
feed_dict={ph_corr2d: img_corr2d,
ph_target_disparity: img_target,
ph_ntile: img_ntile })
qsf.print_time("Done.")
qsf.print_time("Running inferred model, stage2", end=" ")
disp_out, = sess.run([stage2_out_sparse],
feed_dict={ph_ntile_out: img_ntile })
qsf.print_time("Done.")
result_file = files['result'][nimg].replace('.npy','-infer.npy') #not to overwrite training result files that are more complete
try:
os.makedirs(os.path.dirname(result_file))
except:
pass
rslt = np.concatenate(
[disp_out.reshape(-1,1),
dataset_img['t_disps'], #t_disps[ntest],
dataset_img['gtruths'], # gtruths[ntest],
],1)
np.save(result_file, rslt.reshape(HEIGHT,WIDTH,-1))
rslt = qsf.eval_results(result_file, ABSOLUTE_DISPARITY, radius=CLUSTER_RADIUS, logfile=lf) # (re-loads results). Only uses first 4 layers
if SAVE_TIFFS:
qsf.result_npy_to_tiff(result_file, ABSOLUTE_DISPARITY, fix_nan = True,labels=SLICE_LABELS, logfile=lf)
"""
Remove dataset_img (if it is not [0] to reduce memory footprint
"""
image_data[nimg] = None
"""
Save MetaGraph to Saved_Model in *.pb (protocol buffer) format to
be able to use from Java
"""
# force clean
shutil.rmtree(dirs['exportdir'], ignore_errors=True)
builder = tf.saved_model.builder.SavedModelBuilder(dirs['exportdir'])
builder.add_meta_graph_and_variables(sess,[tf.saved_model.tag_constants.SERVING],main_op=tf.local_variables_initializer())
builder.save(False) # True = *.pbtxt, False = *.pb
if lf:
lf.close()
writer.close()