-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqcstereo_conf_sample.xml
348 lines (334 loc) · 16.8 KB
/
qcstereo_conf_sample.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
<?xml version="1.0" encoding="UTF-8"?>
<properties>
<parameters>
<EPOCHS_TO_RUN> 650 </EPOCHS_TO_RUN> <!-- 752# 3000#0 #0 -->
<NET_ARCH1> 13 </NET_ARCH1> <!--1-st stage network -->
<NET_ARCH2> 9 </NET_ARCH2> <!-- 2-nd stage network -->
<SYM8_SUB> False </SYM8_SUB> <!-- enforce inputs from 2d correlation have symmetrical ones (groups of 8) -->
<SPREAD_CONVERGENCE> False </SPREAD_CONVERGENCE><!-- Input target disparity to all nodes of the 1-st stage -->
<INTER_CONVERGENCE> False </INTER_CONVERGENCE><!-- Input target disparity to all nodes of the 2-nd stage -->
<LR> 3e-4 </LR> <!-- learning rate -->
<LR100> 1e-4 </LR100> <!-- LR # 1e-4 -->
<LR200> 3e-5 </LR200> <!-- LR100 # 3e-5 -->
<LR400> 1e-5 </LR400> <!-- LR200 # 1e-5 -->
<LR600> 3e-6 </LR600> <!-- LR400 # 3e-6 -->
<USE_CONFIDENCE> False </USE_CONFIDENCE>
<ABSOLUTE_DISPARITY> False </ABSOLUTE_DISPARITY> <!-- True # False # True # False -->
<DEBUG_PLT_LOSS> True </DEBUG_PLT_LOSS> <!-- -->
<TILE_LAYERS> 4 </TILE_LAYERS> <!-- -->
<TILE_SIDE> 9 </TILE_SIDE> <!-- 7 -->
<EPOCHS_FULL_TEST> 5 </EPOCHS_FULL_TEST> <!-- 10 # 25# repeat full image test after this number of epochs -->
<TWO_TRAINS> True </TWO_TRAINS> <!-- use 2 train sets -->
<ONLY_TILE> None </ONLY_TILE> <!-- (remove all but center tile data), put None here for normal operation) -->
<CLUSTER_RADIUS> 2 </CLUSTER_RADIUS> <!-- 1 # 1 - 3x3, 2 - 5x5 tiles -->
<SHUFFLE_FILES> True </SHUFFLE_FILES>
<WLOSS_LAMBDA> 0.5 </WLOSS_LAMBDA> <!-- fraction of the W_loss (input layers weight non-uniformity) added to G_loss -->
<SLOSS_LAMBDA> 0.1 </SLOSS_LAMBDA> <!-- weight of loss for smooth fg/bg transitions -->
<SLOSS_CLIP> 0.2 </SLOSS_CLIP> <!-- limit punishment for cutting corners (disparity pix) -->
<WBORDERS_ZERO> True </WBORDERS_ZERO> <!-- Border conditions for first layer weights: False - free, True - tied to 0 -->
<MAX_FILES_PER_GROUP> 4 </MAX_FILES_PER_GROUP> <!-- Reduces memory footprint - file shuffle buffer -->
<MAX_IMGS_IN_MEM> 1 </MAX_IMGS_IN_MEM> <!-- Number of simultaneously loaded images -->
<FILE_UPDATE_EPOCHS> 2 </FILE_UPDATE_EPOCHS> <!-- Update train files each this many epochs. 0 - do not update. Adjust to match speed of HDD/SDD with GPU)-->
<PARTIALS_WEIGHTS> [2.0,0.5,0.2] </PARTIALS_WEIGHTS><!-- weight of full 5x5, center 3x3 and center 1x1. len(PARTIALS_WEIGHTS) == CLUSTER_RADIUS + 1. Set to None -->
<HOR_FLIP> True </HOR_FLIP><!-- randomly flip training data horizontally -->
<SAVE_TIFFS> True </SAVE_TIFFS><!-- save Tiff files after each image evaluation -->
<BATCH_WEIGHTS> [0.9, 1.0, 0.1, 0.1]</BATCH_WEIGHTS> <!-- lvar, hvar, lvar1, hvar1 (increase importance of non-flat clusters -->
<DISP_DIFF_CAP> 0.3 </DISP_DIFF_CAP><!-- cap disparity difference (do not increase loss above)-->
<DISP_DIFF_SLOPE> 0.03 </DISP_DIFF_SLOPE><!-- allow squared error to grow above DISP_DIFF_CAP -->
<TRAIN_BUFFER_GPU> 79 </TRAIN_BUFFER_GPU> <!-- in batches merged (now quad) batches-->
<TRAIN_BUFFER_CPU> 4 </TRAIN_BUFFER_CPU> <!-- in TRAIN_BUFFER_GPU-s -->
<!-- if TEST_TITLES is present, it should have 8 entries, use None to skip certain modes -->
<TEST_TITLES>["Test flat heuristic",
"Test edge heuristic",
"Test flat random",
"Test edge random",
"Fake flat heuristic",
"Fake edge heuristic",
"Fake flat random",
"Fake edge random"]</TEST_TITLES>
<CHECKPOINT_PERIOD>100</CHECKPOINT_PERIOD>
<!-- <FIGS_ESXTENSIONS>["png","pdf","svg"]</FIGS_ESXTENSIONS> -->
<FIGS_EXTENSIONS>["pdf"]</FIGS_EXTENSIONS>
<!-- <FIGS_SAVESHOW>['save','show']</FIGS_SAVESHOW> -->
<FIGS_SAVESHOW>['save']</FIGS_SAVESHOW>
<EVAL_MODES>["train","infer"]</EVAL_MODES>
</parameters>
<dbg_parameters>
<disparity_ranges>
[[[0.0, 5.0,[0, 323,0,241]], "City Creek 1"],
[[0.0, 4.0,[180,240, 90,140]], "City Creek 2"],
[[1.0, 2.0,[180,240, 90,140]], "City Creek 3"],
[[1.0, 1.5,[280,320, 70,120]], "City Creek 4"],
[[0.0, 0.5,[ 10,120, 60,120]], "City Creek 5"],
[[0.0, 2.0,[210,303, 70,130]], "City Creek 6"],
[[0.0, 3.0,[ 75,225, 50,140]], "State Capitol"],
[[0.0, 3.0,[170,225, 95,140]], "Stop Sign"],
[[0.0, 1.0,[ 75,135,100,135]], "SLC from Capitol Hill 1"],
[[0.0, 1.5,[ 90,190,125,170]], "SLC from Capitol Hill 2"],
[[0.0, 0.6,[ 95,210, 65,140]], "Overlook approach"],
[[0.0,10.0,[ 60,190, 95,145]], "North Salt Lake 1"],
[[0.0, 5.0,[120,230, 85,145]], "North Salt Lake 2"], <!-- bad pole -->
[[0.0, 2.0,[ 10,155, 90,150]], "North Salt Lake 3"], <!-- LPF? misaligned? -->
[[0.0, 0.6,[140,230,135,60]], "Overlook"],
[[0.0, 1.0,[120,180,125,80]],[2.0, 4.0, [50,130,125, 70]], "State Street1"],
[[0.0, 1.0,[130,210,135,95]],[0.5, 2.5, [50,150,150, 75]], "State Street2"],
[ [1.0, 2.5, [90,170, 50, 0]], "B737 near"],
[ [0.75, 1.5, [125,150, 90, 70]], "B737 midrange"],
[ [0.4, 0.8, [135,150,102,112]], "B737 far"]
]
</disparity_ranges>
</dbg_parameters>
<directories>
<train_lvar>
"tf_data_5x5_main_13_heur"
</train_lvar>
<train_hvar>
"tf_data_5x5_main_13_heur"
</train_hvar>
<train_lvar1>
"tf_data_5x5_main_11_rnd"
</train_lvar1>
<train_hvar1>
"tf_data_5x5_main_11_rnd"
</train_hvar1>
<test_lvar>
"tf_data_5x5_main_10_heur" <!-- test file, no offset from hieuristic-->
</test_lvar>
<test_hvar>
"tf_data_5x5_main_10_heur" <!-- test file, no offset from hieuristic-->
</test_hvar>
<test_lvar1>
"tf_data_5x5_main_11_rnd" <!-- test file, random +/1 2pix offset-->
</test_lvar1>
<test_hvar1>
"tf_data_5x5_main_11_rnd" <!-- test file, random +/1 2pix offset-->
</test_hvar1>
<fake_lvar>
"tf_data_5x5_main_10_heur" <!-- test file, no offset from hieuristic-->
</fake_lvar>
<fake_hvar>
"tf_data_5x5_main_10_heur" <!-- test file, no offset from hieuristic-->
</fake_hvar>
<fake_lvar1>
"tf_data_5x5_main_11_rnd" <!-- test file, random +/1 2pix offset-->
</fake_lvar1>
<fake_hvar1>
"tf_data_5x5_main_11_rnd" <!-- test file, random +/1 2pix offset-->
</fake_hvar1>
<images>
"tf_data_5x5_main_13_heur/img"
</images>
<result>
"tf_data_5x5_main_13_heur/result"
</result>
<figures>
"tf_data_5x5_main_13_heur/result/figs"
</figures>
<checkpoints>
"tf_data_5x5_main_13_heur/checkpoints"
</checkpoints>
<inference>
"tf_data_5x5_main_13_heur/inference"
</inference>
<exportdir>
"tf_data_5x5_main_13_heur/trained_model"
</exportdir>
</directories>
<files>
<train_lvar>
["train000_R2_LE_0.4.tfrecords",
"train001_R2_LE_0.4.tfrecords",
"train002_R2_LE_0.4.tfrecords",
"train003_R2_LE_0.4.tfrecords",
"train004_R2_LE_0.4.tfrecords",
"train005_R2_LE_0.4.tfrecords",
"train006_R2_LE_0.4.tfrecords",
"train007_R2_LE_0.4.tfrecords",
"train008_R2_LE_0.4.tfrecords",
"train009_R2_LE_0.4.tfrecords",
"train010_R2_LE_0.4.tfrecords",
"train011_R2_LE_0.4.tfrecords",
"train012_R2_LE_0.4.tfrecords",
"train013_R2_LE_0.4.tfrecords",
"train014_R2_LE_0.4.tfrecords",
"train015_R2_LE_0.4.tfrecords",
<!--
"train016_R2_LE_0.4.tfrecords",
"train017_R2_LE_0.4.tfrecords",
"train018_R2_LE_0.4.tfrecords",
"train019_R2_LE_0.4.tfrecords",
"train020_R2_LE_0.4.tfrecords",
"train021_R2_LE_0.4.tfrecords",
"train022_R2_LE_0.4.tfrecords",
"train023_R2_LE_0.4.tfrecords",
"train024_R2_LE_0.4.tfrecords",
"train025_R2_LE_0.4.tfrecords",
"train026_R2_LE_0.4.tfrecords",
"train027_R2_LE_0.4.tfrecords",
"train028_R2_LE_0.4.tfrecords",
"train029_R2_LE_0.4.tfrecords",
"train030_R2_LE_0.4.tfrecords",
"train031_R2_LE_0.4.tfrecords" -->]
</train_lvar>
<train_hvar>
["train000_R2_GT_0.4.tfrecords",
"train001_R2_GT_0.4.tfrecords",
"train002_R2_GT_0.4.tfrecords",
"train003_R2_GT_0.4.tfrecords",
"train004_R2_GT_0.4.tfrecords",
"train005_R2_GT_0.4.tfrecords",
"train006_R2_GT_0.4.tfrecords",
"train007_R2_GT_0.4.tfrecords",
"train008_R2_GT_0.4.tfrecords",
"train009_R2_GT_0.4.tfrecords",
"train010_R2_GT_0.4.tfrecords",
"train011_R2_GT_0.4.tfrecords",
"train012_R2_GT_0.4.tfrecords",
"train013_R2_GT_0.4.tfrecords",
"train014_R2_GT_0.4.tfrecords",
"train015_R2_GT_0.4.tfrecords",
<!--
"train016_R2_GT_0.4.tfrecords",
"train017_R2_GT_0.4.tfrecords",
"train018_R2_GT_0.4.tfrecords",
"train019_R2_GT_0.4.tfrecords",
"train020_R2_GT_0.4.tfrecords",
"train021_R2_GT_0.4.tfrecords",
"train022_R2_GT_0.4.tfrecords",
"train023_R2_GT_0.4.tfrecords",
"train024_R2_GT_0.4.tfrecords",
"train025_R2_GT_0.4.tfrecords",
"train026_R2_GT_0.4.tfrecords",
"train027_R2_GT_0.4.tfrecords",
"train028_R2_GT_0.4.tfrecords",
"train029_R2_GT_0.4.tfrecords",
"train030_R2_GT_0.4.tfrecords",
"train031_R2_GT_0.4.tfrecords"-->]
</train_hvar>
<train_lvar1>
["train000_R2_LE_0.4.tfrecords",
"train001_R2_LE_0.4.tfrecords",
"train002_R2_LE_0.4.tfrecords",
"train003_R2_LE_0.4.tfrecords",
"train004_R2_LE_0.4.tfrecords",
"train005_R2_LE_0.4.tfrecords",
"train006_R2_LE_0.4.tfrecords",
"train007_R2_LE_0.4.tfrecords",
"train008_R2_LE_0.4.tfrecords",
"train009_R2_LE_0.4.tfrecords",
"train010_R2_LE_0.4.tfrecords",
"train011_R2_LE_0.4.tfrecords",
"train012_R2_LE_0.4.tfrecords",
"train013_R2_LE_0.4.tfrecords",
"train014_R2_LE_0.4.tfrecords",
"train015_R2_LE_0.4.tfrecords",
"train016_R2_LE_0.4.tfrecords",
"train017_R2_LE_0.4.tfrecords",
"train018_R2_LE_0.4.tfrecords",
"train019_R2_LE_0.4.tfrecords",
"train020_R2_LE_0.4.tfrecords",
"train021_R2_LE_0.4.tfrecords",
"train022_R2_LE_0.4.tfrecords",
"train023_R2_LE_0.4.tfrecords",
"train024_R2_LE_0.4.tfrecords",
"train025_R2_LE_0.4.tfrecords",
"train026_R2_LE_0.4.tfrecords",
"train027_R2_LE_0.4.tfrecords",
"train028_R2_LE_0.4.tfrecords",
"train029_R2_LE_0.4.tfrecords",
"train030_R2_LE_0.4.tfrecords",
"train031_R2_LE_0.4.tfrecords"]
</train_lvar1>
<train_hvar1>
["train000_R2_GT_0.4.tfrecords",
"train001_R2_GT_0.4.tfrecords",
"train002_R2_GT_0.4.tfrecords",
"train003_R2_GT_0.4.tfrecords",
"train004_R2_GT_0.4.tfrecords",
"train005_R2_GT_0.4.tfrecords",
"train006_R2_GT_0.4.tfrecords",
"train007_R2_GT_0.4.tfrecords",
"train008_R2_GT_0.4.tfrecords",
"train009_R2_GT_0.4.tfrecords",
"train010_R2_GT_0.4.tfrecords",
"train011_R2_GT_0.4.tfrecords",
"train012_R2_GT_0.4.tfrecords",
"train013_R2_GT_0.4.tfrecords",
"train014_R2_GT_0.4.tfrecords",
"train015_R2_GT_0.4.tfrecords",
"train016_R2_GT_0.4.tfrecords",
"train017_R2_GT_0.4.tfrecords",
"train018_R2_GT_0.4.tfrecords",
"train019_R2_GT_0.4.tfrecords",
"train020_R2_GT_0.4.tfrecords",
"train021_R2_GT_0.4.tfrecords",
"train022_R2_GT_0.4.tfrecords",
"train023_R2_GT_0.4.tfrecords",
"train024_R2_GT_0.4.tfrecords",
"train025_R2_GT_0.4.tfrecords",
"train026_R2_GT_0.4.tfrecords",
"train027_R2_GT_0.4.tfrecords",
"train028_R2_GT_0.4.tfrecords",
"train029_R2_GT_0.4.tfrecords",
"train030_R2_GT_0.4.tfrecords",
"train031_R2_GT_0.4.tfrecords"]
</train_hvar1>
<!-- Currently test* and fake* should have exactly one entry each.Should be defined for each non-None TEST_TITLES element-->
<test_lvar>
["testTEST_R2_LE_0.4.tfrecords"] <!-- test file, low variance, no offset-->
</test_lvar>
<test_hvar>
["testTEST_R2_GT_0.4.tfrecords"] <!-- test file, high variance, no offset-->
</test_hvar>
<test_lvar1>
["testTEST_R2_LE_0.4.tfrecords"] <!-- test file, low variance, +/-2 pix offset-->
</test_lvar1>
<test_hvar1>
["testTEST_R2_GT_0.4.tfrecords"] <!-- test file, high variance, +/-2 pix offset-->
</test_hvar1>
<fake_lvar>
["testFAKE_R2_LE_0.4.tfrecords"] <!-- fake test (made from train data) file, low variance, no offset-->
</fake_lvar>
<fake_hvar>
["testFAKE_R2_GT_0.4.tfrecords"] <!-- fake test (made from train data) file, high variance, no offset-->
</fake_hvar>
<fake_lvar1>
["testFAKE_R2_LE_0.4.tfrecords"] <!-- fake test (made from train data) file, low variance, +/-2 pix offset-->
</fake_lvar1>
<fake_hvar1>
["testFAKE_R2_GT_0.4.tfrecords"] <!-- fake test (made from train data) file, high variance, +/-2 pix offset-->
</fake_hvar1>
<images>
["1527257235_150165-v02", <!-- City Creek 1 -->
"1527257235_350165-v02", <!-- City Creek 2 -->
"1527257235_550165-v02", <!-- City Creek 3 -->
"1527257235_750165-v02", <!-- City Creek 4 -->
"1527257235_950165-v02", <!-- City Creek 5 -->
"1527257244_350165-v02", <!-- City Creek 6 -->
"1527257370_950165-v02", <!-- State Capitol -->
"1527257406_950165-v02", <!-- Stop Sign -->
"1527257757_950165-v02", <!-- SLC from Capitol Hill 1 -->
"1527257787_950165-v02", <!-- SLC from Capitol Hill 2 -->
"1527257894_750165-v02", <!-- Overlook approach -->
"1527258897_071435-v02", <!-- North Salt Lake 1 -->
"1527258936_671435-v02", <!-- North Salt Lake 2 -->
"1527259003_271435-v02", <!-- North Salt Lake 3 -->
"1527257933_150165-v04", <!-- overlook -->
"1527256858_150165-v01", <!-- State Street -->
"1527256816_150165-v02", <!-- State Street -->
"1527182802_096892-v02", <!-- plane near plane -->
"1527182805_096892-v02", <!-- plane midrange used up to -49 plane -->
"1527182810_096892-v02" <!-- plane far -->
]
</images>
<checkpoints>
"model_checkpoints"
</checkpoints>
<inference>
"model"
</inference>
<exportdir>
"model"
</exportdir>
</files>
</properties>