-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPSB_AGN_CMD_Runner.py
430 lines (341 loc) · 19.9 KB
/
PSB_AGN_CMD_Runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# File is intended to run on the UIUC Campus Cluster (CAPs).
# You can specify the galaxies you want to run
# In terminal:
# To run all galaxies: ~$ python3 PSB_AGN_CMD_Runner.py all
# To run galaxies 1, 6, 12: ~$ python3 PSB_AGN_CMD_Runner.py 1 6 12
# 1: ### Import packages ### ----------------------------------------------------------------------------
import time, sys, os
import numpy as np
import astropy as ap
from matplotlib.pyplot import *
import seaborn as sns
# Import packages to open fits and calculate cosmology
from astropy.io import fits
from astropy.cosmology import WMAP9
import astropy.coordinates as coord
from astropy.coordinates import SkyCoord
from astropy import units as u
from astroquery.sdss import SDSS
from scipy.io import readsav
# Import prospector
# sys.path.insert(0, '/mnt/c/Users/emma_d/ASTR_Research/lib/python3.8/site-packages/repo/prospector/')
import prospect
from prospect.fitting import fit_model
from prospect.io import write_results as writer
from prospect.plotting import corner
# import corner
# Import my build functions
from build_model_funct import build_model
from build_obs_funct import build_obs
from FracSFH_ import FracSFH
# re-defining plotting defaults for matplotlib
from matplotlib.font_manager import FontProperties
from matplotlib import gridspec
my_cmap = sns.color_palette("tab10")
rcParams.update({'xtick.major.pad': '7.0'})
rcParams.update({'xtick.major.size': '7.5'})
rcParams.update({'xtick.major.width': '1.5'})
rcParams.update({'xtick.minor.pad': '7.0'})
rcParams.update({'xtick.minor.size': '3.5'})
rcParams.update({'xtick.minor.width': '1.0'})
rcParams.update({'ytick.major.pad': '7.0'})
rcParams.update({'ytick.major.size': '7.5'})
rcParams.update({'ytick.major.width': '1.5'})
rcParams.update({'ytick.minor.pad': '7.0'})
rcParams.update({'ytick.minor.size': '3.5'})
rcParams.update({'ytick.minor.width': '1.0'})
rcParams.update({'xtick.color': 'k'})
rcParams.update({'ytick.color': 'k'})
rcParams.update({'font.size': 30})
rcParams.update({'axes.facecolor':'w'})
rcParams.update({'savefig.facecolor':'w'})
rcParams.update({'lines.linewidth':'0.7'})
rcParams.update({'axes.prop_cycle': cycler(color = sns.color_palette("tab10"))})
rcParams.update({'figure.dpi': 300})
rcParams.update({'savefig.dpi': 300})
# Turn off warnings to clear up terminal when running
import warnings
warnings.filterwarnings('ignore', message='.*encountered in log.*')
warnings.filterwarnings('ignore', message='.*Reading unicode strings without specifying.*')
warnings.filterwarnings('ignore', message='.*Invalid keyword for column 66.*')
warnings.filterwarnings('ignore', message='.*Could not store paramfile text.*')
warnings.filterwarnings('ignore', message='.*Could not JSON serialize.*')
# package versions
# vers = (np.__version__, scipy.__version__, h5py.__version__, fsps.__version__, prospect.__version__)
# print("numpy: {}\nscipy: {}\nh5py: {}\nfsps: {}\nprospect: {}".format(*vers))
# 2: ### Define constants and functions ### -------------------------------------------------------------
# Constants:
lsun = 3.846e33
pc = 3.085677581467192e18 # in cm
lightspeed = 2.998e18 # A/s
to_cgs = lsun/(4.0 * np.pi * (pc*10)**2)
jansky_mks = 1e-26
# My Unit Functions:
def mJy_to_maggies(mJy):
""" Converts mJy to maggies
"""
conversion_mJy_Jy = .001
conversion_mJy_maggie = 3631
return mJy * conversion_mJy_Jy/conversion_mJy_maggie
def f_nu_to_f_lambda_maggie(lam, f_nu):
""" Converts f_nu (ergs) to f_lambda (maggies)
"""
f_lambda_ergs = (10**-17 * f_nu) * (lam**2)/lightspeed
f_lambda_mJy = (f_lambda_ergs / (1E-23)) * 1000
f_lambda_maggie = mJy_to_maggies(f_lambda_mJy)
return f_lambda_maggie
# From GitHub:
def get_best_v2(res, **kwargs):
""" Get the maximum a posteriori parameters.
"""
imax = np.argmax(res['lnprobability'])
try:
i, j = np.unravel_index(imax, res['lnprobability'].shape)
theta = res['chain'][i, j, :].copy()
except(ValueError):
theta = res['chain'][imax, :].copy()
return theta
def build_sps(zcontinuous=1, **extras):
""" Build sps object using FracSFH basis
"""
sps = FracSFH(zcontinuous = 1, **extras)
return sps
def zfrac_to_masses(total_mass=None, z_fraction=None, agebins=None, **extras):
"""This transforms from independent dimensionless `z` variables to sfr
fractions and then to bin mass fractions. The transformation is such that
sfr fractions are drawn from a Dirichlet prior. See Betancourt et al. 2010
and Leja et al. 2017
:param total_mass:
The total mass formed over all bins in the SFH.
:param z_fraction:
latent variables drawn form a specific set of Beta distributions. (see
Betancourt 2010)
:returns masses:
The stellar mass formed in each age bin.
"""
# sfr fractions
sfr_fraction = np.zeros(len(z_fraction) + 1)
sfr_fraction[0] = 1.0 - z_fraction[0]
for i in range(1, len(z_fraction)):
sfr_fraction[i] = np.prod(z_fraction[:i]) * (1.0 - z_fraction[i])
sfr_fraction[-1] = 1 - np.sum(sfr_fraction[:-1])
# convert to mass fractions
time_per_bin = np.diff(10**agebins, axis=-1)[:, 0]
mass_fraction = sfr_fraction * np.array(time_per_bin)
mass_fraction /= mass_fraction.sum()
masses = total_mass * mass_fraction
return masses
def zfrac_to_sfr(total_mass=None, z_fraction=None, agebins=None, **extras):
"""This transforms from independent dimensionless `z` variables to SFRs.
:returns sfrs:
The SFR in each age bin (msun/yr).
"""
time_per_bin = np.diff(10**agebins, axis=-1)[:, 0]
masses = zfrac_to_masses(total_mass, z_fraction, agebins)
return masses / time_per_bin
def best_vals(result_list):
q_16, q_50, q_84 = corner.quantile(result_list, [0.16, 0.5, 0.84])
dx_down, dx_up = q_50-q_16, q_84-q_50
# return (np.around(q_50,2), np.around(dx_up,2), np.around(dx_down,2))
return q_50, dx_up, dx_down
def PSB_AGN_CAPS_Funct(galaxy_num, Template_Type):
# 3: ### Start Timer ### ---------------------------------------------------------------------------------
start_time = time.time()
# 4: ### Import full galaxy file for all 58 galaxies ### --------------------------------------------------
AGN_file = fits.open('/home/elitzer3/scratch/PSB_AGN_Scratch/Data/asu.fit') # '/mnt/c/Users/emma_d/ASTR_Research/Data/asu.fit'
AGN_data = AGN_file[1].data
# 5: ### Choose a galaxy (0 to 57) ### -------------------------------------------------------------------
galaxy_num = galaxy_num
Template_Type = Template_Type
# Create galaxy file to store plots and hdf5 data file
if not os.path.exists('/home/elitzer3/scratch/PSB_AGN_Scratch//Galaxy_output/G{}/'.format(galaxy_num)): #'Galaxy_output/G{}/'
os.mkdir('/home/elitzer3/scratch/PSB_AGN_Scratch//Galaxy_output/G{}/'.format(galaxy_num))
Galaxy_Path = '/home/elitzer3/scratch/PSB_AGN_Scratch//Galaxy_output/G{}/'.format(galaxy_num)
print('{0}: This is for Galaxy {1}'.format(time.strftime("%H:%M:%S", time.localtime()), galaxy_num))
ts = time.strftime("%y%b%d", time.localtime())
print('{0}: The Date is {1}'.format(time.strftime("%H:%M:%S", time.localtime()), ts))
print('{0}: The template type is {1}'.format(time.strftime("%H:%M:%S", time.localtime()), Template_Type))
# 6: ### Pull RA, DEC from data file and query SDSS ### -----------------------------------------------------
Gal_RA, Gal_DEC = AGN_data[galaxy_num][2], AGN_data[galaxy_num][3]
pos = coord.SkyCoord(Gal_RA, Gal_DEC, unit='deg',frame='icrs')
xid = SDSS.query_region(pos, spectro=True)
# 7: ### Redefine RA, DEC ### -------------------------------------------------------------------------------
Gal_RA = xid['ra'][0]
Gal_DEC = xid['dec'][0]
G_Redshift = xid['z'][0] # Use redshift from SDSS query
cosmo = ap.cosmology.FlatLambdaCDM(H0=70 , Om0=0.3) # Cosmological redshift object
ldist_Mpc_units = cosmo.comoving_distance(G_Redshift) # Cosmological redshift
ldist_Mpc = ldist_Mpc_units.value
tage_of_univ = WMAP9.age(G_Redshift).value # Gyr
# 8: ### Get optical image from the url using galaxy RA and DEC ### -------------------------------------
SDSS_scale = 0.396127 # arcsec/pix
SDSS_width = 128 # SDSS_arcsec/SDSS_scale
SDSS_arcsec = SDSS_width * SDSS_scale # arcsec
SDSS_deg = SDSS_arcsec/3600 # deg
SDSS_center_coords = SkyCoord(ra=Gal_RA*u.degree, dec=Gal_DEC*u.degree)
SDSS_left_coords = SkyCoord(ra=Gal_RA*u.degree - (SDSS_deg/2) * u.deg, dec=Gal_DEC*u.degree - (SDSS_deg/2) * u.deg)
SDSS_right_coords = SkyCoord(ra=Gal_RA*u.degree + (SDSS_deg/2) * u.deg, dec=Gal_DEC*u.degree + (SDSS_deg/2) * u.deg)
ra_center_str = '{0:.0f}h{1:.0f}m{2:.0f}s'.format(SDSS_center_coords.ra.hms[0], SDSS_center_coords.ra.hms[1], SDSS_center_coords.ra.hms[2])
ra_left_str = '{0:.0f}h{1:.0f}m{2:.0f}s'.format(SDSS_left_coords.ra.hms[0], SDSS_left_coords.ra.hms[1], SDSS_left_coords.ra.hms[2])
ra_right_str = '{0:.0f}h{1:.0f}m{2:.0f}s'.format(SDSS_right_coords.ra.hms[0], SDSS_right_coords.ra.hms[1], SDSS_right_coords.ra.hms[2])
dec_center_str = '{0:.0f}h{1:.0f}m{2:.0f}s'.format(SDSS_center_coords.dec.hms[0], SDSS_center_coords.dec.hms[1], SDSS_center_coords.dec.hms[2])
dec_left_str = '{0:.0f}h{1:.0f}m{2:.0f}s'.format(SDSS_left_coords.dec.hms[0], SDSS_left_coords.dec.hms[1], SDSS_left_coords.dec.hms[2])
dec_right_str = '{0:.0f}h{1:.0f}m{2:.0f}s'.format(SDSS_right_coords.dec.hms[0], SDSS_right_coords.dec.hms[1], SDSS_right_coords.dec.hms[2])
# 9: ### Retreive IRS Data and indicate if it exists ### -------------------------------------------------
ea_struct = readsav('/home/elitzer3/scratch/PSB_AGN_Scratch/Data/ea_struct_v9.sav')['ea_struct'] #'Data/ea_struct_v9.sav'
gal_desig = AGN_data[galaxy_num][1]
gal_EA_Desig = gal_desig[2:]
s1, = np.where(ea_struct.source.astype(str) == 'Spitzer') # Pulls only spitzer from sources
ea_struct = ea_struct[s1] # Masks ea_struct to get spitzer
# If the IRS data contains the galaxy, graph the IRS data. If not print there is no IRS data.
if gal_EA_Desig in ea_struct['EA_DESIG'].astype(str):
IRS_indicator = 1 # Indicates there is IRS data
print('{0}: There is Spitzer IRS spectrum data for this galaxy'.format(time.strftime("%H:%M:%S", time.localtime())))
else:
IRS_indicator = 0 # Indicates there is no IRS data
print('{0}: There is no Spitzer IRS spectrum data for this galaxy'.format(time.strftime("%H:%M:%S", time.localtime())))
# 10: ### Create run_params dictionary ### -----------------------------------------------------------------
run_params = { 'ldist': ldist_Mpc,
'agelims': [0.0,8.0,8.5,9.0,9.5,9.8,10.0],
'object_redshift': G_Redshift,
'zcontinuous': 1, # Leja: 2
'verbose': False, # Leja: True
'dynesty': False,
'emcee': False,
'optimize': False,
'optimization': False,
'min_method': 'lm',
'nmin': 5, # initially 2, can try 1 # 5
'nwalkers': 128, # Leja: 620 #128 #300
'niter': 300, # Leja: 7500 # 512
'nburn': [16, 32, 64], # Leja: [150, 200, 200] # [16, 32, 64]
'optimization': False,
'nested_method': 'rwalk',
'nlive_init': 400,
'nlive_batch': 200,
'nested_dlogz_init': 0.05,
'nested_posterior_thresh': 0.05,
'nested_maxcall': int(1e7),
'objname': 'G{0}_{1}'.format(galaxy_num, gal_desig),
'initial_disp': 0.1,
'AGN_switch': True,
'tage_of_univ': tage_of_univ,
'Template_Type': Template_Type,
'galaxy_num': galaxy_num,
'IRS_indicator': IRS_indicator,
'SDSS_Query': xid,
'total_mass_switch': True,
'gal_desig': gal_desig,
'ts': ts,
'ID': 'G{0}_{1}_{2}_{3}'.format(galaxy_num, gal_desig, Template_Type, ts),
'ra_labels': [ra_left_str, ra_center_str, ra_right_str],
'dec_labels': [dec_left_str, dec_center_str, dec_right_str]
# 'nofork': True,
# 'ftol': 0.5e-5
# 'maxfev': 5000,
# 'interval': 0.2,
# 'convergence_check_interval': 50,
# 'convergence_chunks': 325,
# 'convergence_kl_threshold': 0.016,
# 'convergence_stable_points_criteria': 8,
# 'convergence_nhist': 50,
# 'compute_vega_mags': False,
# 'interp_type': 'logarithmic'
}
# 11: ### Built obs dict using meta-params ### ------------------------------------------------------------
obs = build_obs(**run_params)
# 12: ### Define agelimits, tilde_alpha, and z_fraction_init for build_model ### --------------------------
# Determine agelimits for SFR
agelims = run_params['agelims']
agelims[-1] = np.log10(tage_of_univ * 1e9)
agebins = np.array([agelims[:-1], agelims[1:]])
ncomp = agebins.shape[1]
tilde_alpha = np.array([ncomp - i for i in list(range(1, ncomp))])
z_fraction_init = np.array([(i-1)/float(i) for i in range(ncomp,1,-1)])
# Save prospector compatible arrays to run_params
run_params['ncomp'] = ncomp
run_params['agebins_init'] = agebins.T
run_params['tilde_alpha'] = tilde_alpha
run_params['z_fraction_init'] = z_fraction_init
# 13: ### Build and view model ### ------------------------------------------------------------------
model = build_model(**run_params)
# Save number of free parameters and number of data points to run_params
run_params['num_free_params'] = len(model.free_params)
run_params['free_params'] = model.free_params
run_params['num_data_points'] = len(obs['maggies'][obs["phot_mask"]])
# 14: ### Build sps object using FracSFH basis ### -------------------------------------------------------
sps = build_sps(**run_params) # Charlie Konroy
# 15: ### View Model ### ---------------------------------------------------------------------------------
### prediction for the data from any set of model params ###
### Generate the model SED with the 'init' parameter values in model
theta = model.theta.copy()
initial_spec, initial_phot, initial_mfrac = model.sed(theta, obs=obs, sps=sps)
# 16: ### Likelyhood Function ### -----------------------------------------------------------------------
# Turn off AGN parameters so that all galaxies can have a Xi2 prediction
run_params['AGN_switch'] = False
run_params['total_mass_switch'] = False
run_params["emcee"] = False
run_params["optimize"] = True
### Running Prospector ###
# Fit the model using chi squared minimization and Ensemble MCMC sampler around best location from the minimization
# Run all building functions
obs = build_obs(**run_params)
sps = build_sps(**run_params)
model = build_model(**run_params)
# For fsps based sources it is useful to know which stellar isochrone and spectral library
# print(sps.ssp.libraries)
# help(fit_model)
# 17: ### Minimization ### ------------------------------------------------------------------------------
# Uses Levenberg-Marquardt, needed parameters in run_params requires a likelihood function that returns a vector of chi values
# --- start minimization ---- #
print('{0}: Begin optimization for {1}'.format(time.strftime("%H:%M:%S", time.localtime()), run_params['ID']))
output = fit_model(obs, model, sps, lnprobfn=prospect.fitting.lnprobfn, **run_params)
print("{0}: Done optmization in {1}m for {2}".format(time.strftime("%H:%M:%S", time.localtime()), output["optimization"][1]/60, run_params['ID']))
# 18: ### Plot prediction SED with initial SED ### -------------------------------------------------------
(results, topt) = output["optimization"]
ind_best = np.argmin([r.cost for r in results]) # Find which of the minimizations gave the best result and use the parameter vector for that minimization
print('{0}: ind_best = {1}'.format(time.strftime("%H:%M:%S", time.localtime()), ind_best))
theta_prediction = results[ind_best].x.copy()
print("{0} theta_prediction = {1}".format(time.strftime("%H:%M:%S", time.localtime()), theta_prediction))
# 19: ### Rebuild model and obs for MCMC ### ---------------------------------------------------------------
# Turn AGN parameters back on, turn on emcee
run_params['AGN_switch'] = True
run_params['total_mass_switch'] = True
run_params["optimize"] = False
run_params["emcee"] = True
# Re-run build functions with AGN
obs = build_obs(**run_params)
sps = build_sps(**run_params)
model = build_model(**run_params)
# 20: ### Run MCMC with emcee ### ------------------------------------------------------------------------
# Print run_params
# print('run_params:')
# for i, item1 in enumerate(run_params):
# print(item1, ':\t', run_params[item1])
# --- Run MCMC --- #
print('{1}: Start emcee for {0}'.format(run_params['ID'], time.strftime("%H:%M:%S", time.localtime())))
output = fit_model(obs, model, sps, lnprobfn=prospect.fitting.lnprobfn, **run_params)
print('{2}: done emcee in {0:.2f}m for {1}'.format(output["sampling"][1]/60, run_params['ID'], time.strftime("%H:%M:%S", time.localtime())))
# 21: ### Create file path and re-run build functions ### ------------------------------------------------
hfile = Galaxy_Path + '{}_mcmc.h5'.format(run_params['ID'])
obs, model, sps = build_obs(**run_params), build_model(**run_params), build_sps(**run_params)
# 22: ### Save results to h5 File ### -------------------------------------------------------------------
writer.write_hdf5(hfile, run_params, model, obs,
output["sampling"][0], output["optimization"][0],
tsample=output["sampling"][1],
toptimize=output["optimization"][1],
sps=sps)
print('{0}: Finished writing h5 file'.format(time.strftime("%H:%M:%S", time.localtime())))
# 23: ### Print time it takes to run ### -------------------------------------------------------------------
end_time = time.time()
print('{0}: This program takes:\n\t {1:.2f} \tsecs\n\t {2:.2f} \tmins\n\t {3:.2f} \thours'.format(time.strftime("%H:%M:%S", time.localtime()), (end_time - start_time), (end_time - start_time)/60, (end_time - start_time)/60/60))
print('{0}: Finished'.format(time.strftime("%H:%M:%S", time.localtime())))
print('{0}: Packages and Functions Loaded'.format(time.strftime("%H:%M:%S", time.localtime())))
Galaxy_list = sys.argv[1:]
print('{0}: Running PSB_AGN_CMD_Runner.py for Galaxies: \t {1}'.format(time.strftime("%H:%M:%S", time.localtime()), Galaxy_list))
if str(Galaxy_list[0]) == 'all':
for i in range(0, 58):
PSB_AGN_CAPS_Funct(galaxy_num = i, Template_Type = 'Test_CAPS_All_Galaxy_Run')
else:
for i in range(0, len(Galaxy_list)):
PSB_AGN_CAPS_Funct(galaxy_num = int(Galaxy_list[i]), Template_Type = 'Test_CAPS_Limited_Galaxy_Run' )