-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model_score_pp_test.py
213 lines (167 loc) · 8.33 KB
/
train_model_score_pp_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import sys
import pickle
import time
from tqdm import tqdm
import warnings
import dgl
import torch
import torch.optim as optim
from torch.utils import data
from GCNfold.common.utils import *
from GCNfold.common.config import process_config
from GCNfold.postprocess import postprocess
from data.RNAGraph import RNADataset, RNADatasetSingle
from GCNfold.models import Lag_PP_mixed
from nets.gcnfold_net import GCNFoldNet, RNA_SS_e2e
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
warnings.filterwarnings("ignore")
def load_model(dataset_name, base_dir, net_params, model_type, epoch):
save_dir = os.path.join(base_dir, 'model_save/')
if os.path.exists(save_dir) is False:
os.makedirs(save_dir)
if os.path.exists(save_dir + dataset_name) is False:
os.makedirs(save_dir + dataset_name)
model = GCNFoldNet(d=d, L=seq_len, device=device, net_params=net_params)
PATH = save_dir + dataset_name + '/model_{}_{}.pth'.format(model_type, epoch)
model.load_state_dict(torch.load(PATH))
return model
def view_model_param(net_params):
model = GCNFoldNet(d=d, L=seq_len, device=device, net_params=net_params)
total_param = 0
print("MODEL DETAILS:\n")
print(model)
for param in model.parameters():
total_param += np.prod(list(param.data.size()))
print('GCNfold Score Net/Total parameters:', total_param)
return total_param
# set the base directory path
base_dir = os.getcwd() # /content/drive/MyDrive/GCNfold
# load config
args = get_args()
config_file = args.config
config = process_config(config_file)
net_params = config['net_params']
print('Here is the configuration of this run:')
print(config)
# setup device
os.environ["CUDA_VISIBLE_DEVICES"]= config.gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# initialization
d = config.gcn_net_d # 10
BATCH_SIZE = config.BATCH_SIZE # 2
out_step = config.OUT_STEP # 100
data_type = config.data_type # archiveII
model_type = config.model_type # pretrained
epochs = config.epochs # 100
step_gamma = config.step_gamma # 1
k = config.k # 1
pp_steps = config.pp_steps # 20
pp_loss = config.pp_loss # f1
rho_per_position = config.rho_per_position # matrix
pp_model_path = os.path.join(base_dir, 'model_save', model_type, 'model_pp_{}.pth'.format(config['best_epoch']))
e2e_model_path = os.path.join(base_dir, 'model_save', model_type, 'model_e2e_{}.pth'.format(config['best_epoch']))
seed_torch()
# Load and generator data
print('Load train data')
dataset = RNADataset(base_dir, data_type, config, True)
trainset, valset = dataset.train, dataset.val
dataset_test = RNADatasetSingle(base_dir, data_type, 'test_no_redundant', config)
testset = dataset_test.data
names = np.array(list(map(lambda x: x.split('/')[-1], testset.name)))
drop_last = True
train_loader = data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, drop_last=drop_last, collate_fn=dataset.collate)
val_loader = data.DataLoader(valset, batch_size=BATCH_SIZE, shuffle=False, drop_last=False, collate_fn=dataset.collate)
test_loader = data.DataLoader(testset, batch_size=1, shuffle=False, drop_last=False, collate_fn=dataset_test.collate)
print('Data Loading Done!!!')
seq_len = trainset.seq.shape[1] # (29, 600, 4)
net_params['in_dim'] = dataset.train[0][0].ndata['feat'][0].size(0) # 4
net_params['device'] = device # 'cpu'
print('Max seq length: ', seq_len) # 600
# load Net and put it to device
print('load GCNfold Net')
best_epoch = 0
net_params['total_param'] = view_model_param(net_params)
contact_net = load_model(data_type, base_dir, net_params, 'score', config['best_epoch'])
contact_net.to(device)
print('Net Loading Done!!!')
lag_pp_net = Lag_PP_mixed(pp_steps, k, rho_per_position)
rna_ss_e2e = RNA_SS_e2e(contact_net, lag_pp_net)
print(rna_ss_e2e)
pp_total_param = 0
for param in rna_ss_e2e.parameters():
pp_total_param += np.prod(list(param.data.size()))
print('GCNfold PP Net/Total parameters:', pp_total_param)
lag_pp_net.load_state_dict(torch.load(pp_model_path))
lag_pp_net.to(device)
print('PP Net Loading Done!!!')
rna_ss_e2e.load_state_dict(torch.load(e2e_model_path))
rna_ss_e2e.to(device)
print('E2E Net Loading Done!!!')
# define optimizer and loss function
gcn_optimizer = optim.Adam(rna_ss_e2e.parameters())
pos_weight = torch.Tensor([300]).to(device)
criterion_bce_weighted = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
criterion_mse = torch.nn.MSELoss(reduction='sum')
def all_data_test(contact_net, lag_pp_net, device, test_loader):
contact_net.eval()
lag_pp_net.eval()
auc_test_all_list = list()
exact_test_all_list = list()
shift_test_all_list = list()
ct_pred_list = list()
epoch_test_loss = 0
nb_data = 0
with torch.no_grad():
for iter, (batch_graphs, contacts, seq_embeddings, matrix_reps, seq_lens) in enumerate(test_loader):
batch_graphs = dgl.batch(batch_graphs)
batch_graphs.ndata['feat'] = batch_graphs.ndata['feat'].to(device)
batch_graphs.edata['feat'] = batch_graphs.edata['feat'].to(device)
batch_x = batch_graphs.ndata['feat'].to(device)
batch_e = batch_graphs.edata['feat'].to(device)
# convert to tensor
contacts_batch = torch.Tensor(contacts.astype(float)).to(device) # torch.Size([2, 600, 600])
seq_embedding_batch = torch.Tensor(seq_embeddings.astype(float)).to(device) # torch.Size([2, 600, 4])
matrix_reps_batch = torch.unsqueeze(torch.Tensor(matrix_reps.astype(float)).to(device), -1) # torch.Size([2, 600, 600, 1])
state_pad = torch.zeros([matrix_reps_batch.shape[0], seq_len, seq_len]).to(device) # torch.Size([2, 600, 600])
seq_lens = torch.Tensor(seq_lens).int() # torch.Size([2])
PE_batch = get_pe(seq_lens, seq_len).float().to(device) # utils, torch.Size([2, 600, 111])
contact_masks = torch.Tensor(contact_map_masks(seq_lens, seq_len)).to(device)
pred_contacts = contact_net(batch_graphs, batch_x, batch_e, PE_batch, seq_embedding_batch, state_pad)
a_pred_list = lag_pp_net(pred_contacts, seq_embedding_batch)
final_pred = (a_pred_list[-1].cpu()>0.5).float()
for i in range(final_pred.shape[0]):
ct_tmp = contact2ct(final_pred[i].cpu().numpy(), seq_embeddings[i], seq_lens.numpy()[i])
ct_pred_list.append(ct_tmp)
result_exact = list(map(lambda i: evaluate_exact(final_pred.cpu()[i], contacts_batch.cpu()[i]), range(contacts_batch.shape[0])))
result_shift = list(map(lambda i: evaluate_shifted(final_pred.cpu()[i], contacts_batch.cpu()[i]), range(contacts_batch.shape[0])))
result_auc = list(map(lambda i: calculate_auc(final_pred.cpu()[i], contacts_batch.cpu()[i]), range(contacts_batch.shape[0])))
auc_test_all_list += result_auc
exact_test_all_list += result_exact
shift_test_all_list += result_shift
model_auc = np.average(auc_test_all_list)
exact_p, exact_r, exact_f1, exact_mcc = zip(*exact_test_all_list)
shift_p, shift_r, shift_f1 = zip(*shift_test_all_list)
exact_f1, exact_p, exact_r, exact_mcc = np.average(exact_f1), np.average(exact_p), np.average(exact_r), np.average(exact_mcc)
shift_f1, shift_p, shift_r = np.average(shift_f1), np.average(shift_p), np.average(shift_r)
return model_auc, exact_f1, exact_p, exact_r, exact_mcc, shift_f1, shift_p, shift_r, ct_pred_list
# test all data
auc, f1, p, r, mcc, f1_shift, p_shift, r_shift, ct_list = all_data_test(contact_net, lag_pp_net, device, test_loader)
print('test results, auc: {:.3f}, f1: {:.3f}, p: {:.3f}, r: {:.3f}, mcc: {:.3f}'.format(auc, f1, p, r, mcc))
print('f1_shift: {:.3f}, p_shift: {:.3f}, r_shift: {:.3f}'.format(f1_shift, p_shift, r_shift))
# for saving the results
save_path = config.save_folder
if not os.path.exists(save_path):
os.makedirs(save_path)
def save_file(folder, file, ct_contact):
file_path = os.path.join(folder, file)
print(file_path)
first_line = str(len(ct_contact)) + '\t' + file + '\n'
content = ct_contact.to_csv(header=None, index=None, sep='\t')
with open(file_path, 'w') as f:
f.write(first_line + content)
for i in range(len(names)):
save_file(save_path, names[i], ct_list[i])
print(save_path)
print(names)