forked from MILVLG/bottom-up-attention.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopts.py
37 lines (34 loc) · 1.47 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os
import argparse
def parse_opt():
"""
Create a parser with some common arguments used by detectron2 users.
Returns:
argparse.ArgumentParser:
"""
parser = argparse.ArgumentParser(description="BottomUpAttention Training")
parser.add_argument("--mode", default="caffe", type=str, help="bua_caffe,...")
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
parser.add_argument(
"--resume",
action="store_true",
help="whether to attempt to resume from the checkpoint directory",
)
parser.add_argument("--eval-only", action="store_true", help="perform evaluation only")
parser.add_argument("--num-gpus", type=int, default=1, help="number of gpus *per machine*")
parser.add_argument("--num-machines", type=int, default=1)
parser.add_argument(
"--machine-rank", type=int, default=0, help="the rank of this machine (unique per machine)"
)
# PyTorch still may leave orphan processes in multi-gpu training.
# Therefore we use a deterministic way to obtain port,
# so that users are aware of orphan processes by seeing the port occupied.
port = 2 ** 15 + 2 ** 14 + hash(os.getuid()) % 2 ** 14
parser.add_argument("--dist-url", default="tcp://127.0.0.1:{}".format(port))
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
return parser