-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathner_finetune_re10-11.json
74 lines (74 loc) · 2.47 KB
/
ner_finetune_re10-11.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
{
"random_seed": std.parseInt(std.extVar("SEED")),
"pytorch_seed": std.parseInt(std.extVar("PYTORCH_SEED")),
"numpy_seed": std.parseInt(std.extVar("NUMPY_SEED")),
"dataset_reader": {
"type": "conll2003",
"tag_label": "ner",
"coding_scheme": "BIOUL",
"token_indexers": {
"bert": {
"type": "bert-pretrained",
"pretrained_model": std.extVar("BERT_VOCAB"),
"do_lowercase": std.extVar("IS_LOWERCASE"),
"use_starting_offsets": true
}
}
},
"train_data_path": std.extVar("TRAIN_PATH"),
"validation_data_path": std.extVar("DEV_PATH"),
"test_data_path": std.extVar("TEST_PATH"),
"evaluate_on_test": true,
"model": {
"type": "bert_crf_tagger",
"label_encoding": "BIOUL",
"constrain_crf_decoding": true,
"calculate_span_f1": true,
"dropout": 0.1,
"include_start_end_transitions": false,
"text_field_embedder": {
"allow_unmatched_keys": true,
"embedder_to_indexer_map": {
"bert": ["bert", "bert-offsets"]
},
"token_embedders": {
"bert": {
"type": "bert-pretrained",
"pretrained_model": std.extVar("BERT_WEIGHTS"),
"requires_grad": 'all',
"top_layer_only": true
}
}
},
"initializer":[
[".*11.intermediate.dense.weight", {"type":"xavier_normal"}],
[".*10.intermediate.dense.weight", {"type":"xavier_normal"}],
]
},
"iterator": {
"type": "bucket",
"sorting_keys": [["tokens", "num_tokens"]],
"batch_size": std.parseInt(std.extVar("GRAD_ACCUM_BATCH_SIZE")) / 2,
"cache_instances": true
},
"trainer": {
"optimizer": {
"type": "bert_adam",
"lr": std.extVar("LEARNING_RATE"),
"parameter_groups": [
[["bias", "LayerNorm.bias", "LayerNorm.weight", "layer_norm.weight"], {"weight_decay": 0.0}]
]
},
"validation_metric": "+f1-measure-overall",
"num_serialized_models_to_keep": 3,
"num_epochs": std.parseInt(std.extVar("NUM_EPOCHS")),
"should_log_learning_rate": true,
"learning_rate_scheduler": {
"type": "slanted_triangular",
"num_epochs": std.parseInt(std.extVar("NUM_EPOCHS")),
"num_steps_per_epoch": std.parseInt(std.extVar("DATASET_SIZE")) / std.parseInt(std.extVar("GRAD_ACCUM_BATCH_SIZE"))
},
"gradient_accumulation_batch_size": std.parseInt(std.extVar("GRAD_ACCUM_BATCH_SIZE")),
"cuda_device": std.parseInt(std.extVar("CUDA_DEVICE"))
}
}