-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmm_model.py
30 lines (25 loc) · 1.21 KB
/
hmm_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# hmm_model.py
import numpy as np
def create_new_model(transition_matrix, emission_matrix, state_annotations):
num_states = transition_matrix.shape[0]
num_observations = emission_matrix.shape[1]
new_transitions_matrix = np.zeros((num_states, num_states))
new_emission_matrix = np.zeros((num_states, num_observations))
n = len(state_annotations) - 1
for i in range(n):
current_state = int(state_annotations[i])
next_state = int(state_annotations[i + 1])
new_transitions_matrix[current_state - 1][next_state - 1] += 1
if n > 0:
new_transitions_matrix /= n
return new_transitions_matrix, new_emission_matrix
def compare_models(model1_transition, model1_emission, model2_transition, model2_emission):
kl_transition = np.sum(
model1_transition * np.log(np.divide(model1_transition, model2_transition, out=np.zeros_like(model1_transition), where=model2_transition > 0)),
where=model1_transition > 0
)
kl_emission = np.sum(
model1_emission * np.log(np.divide(model1_emission, model2_emission, out=np.zeros_like(model1_emission), where=model2_emission > 0)),
where=model1_emission > 0
)
return kl_transition + kl_emission