|
24 | 24 | $[a,b]$ & arbitrary finite interval & \\
|
25 | 25 | $\alpha$ & as suffix is species label or index & \\
|
26 | 26 | $\alpha_n$ & perturbation amplitude & \\
|
| 27 | +$\alpha_n$ & scale factor for density source& \\ |
| 28 | +$\alpha_u$ & scale factor for momentum source & \\ |
| 29 | +$\alpha_\mathcal{E}$ & scale factor for energy source & \\ |
27 | 30 | $\alpha^{Z_p\rightarrow Z}$ & partial dielectronic recombination rate coefficient & $m^3 s^{-1}$ \\
|
28 | 31 | $\alpha^{Z\rightarrow Z_m}$ & partial dielectronic recombination rate coefficient & $m^3 s^{-1}$ \\
|
29 | 32 | $b$ & minor radius of the torus (vertical) & $m$ \\
|
|
254 | 257 | $n_{ref}$ & reference number density of the plasma ions & $m^{-3}$ \\
|
255 | 258 | $N_{ref} $ & normalising or reference number density & $10^{18}$ \\
|
256 | 259 | $N$ & number density, may be scaled by $N_{ref}=10^{18}$ & $m^{-3}$ \\
|
257 |
| -$n_0$ & initial number density & $m^{-3}$ \\ |
| 260 | +$n_0$ & initial number density, shorthand for $n(0)$ & $m^{-3}$ \\ |
| 261 | +$n_1$ & number density, shorthand for $n(1)$ & $m^{-3}$ \\ |
258 | 262 | $\nabla \cdot$ & (K+S) Divergence & \\
|
259 | 263 | $\nabla \times$ & (K+S) Curl & \\
|
260 | 264 | $\nabla^2$ & (K+S) Laplacian & \\
|
|
421 | 425 | $t_s$ & characteristic timescale usually in seconds & $s$ \\
|
422 | 426 | $t_H$ & Numerical hand-off time interval usually in seconds & $s$ \\
|
423 | 427 | $t_R$ & Numerical ramp-up time interval usually in seconds & $s$ \\
|
424 |
| -$T_0$ & initial temperature (prefixed by $k$ implies energy in SI) & $eV$ \\ |
| 428 | +$T_0$ & initial temperature (prefixed by $k$ implies energy in SI), shorthand for $T(0)$ & $eV$ \\ |
| 429 | +$T_1$ & temperature (prefixed by $k$ implies energy in SI), shorthand for $T(1)$ & $eV$ \\ |
425 | 430 | $T_{Kn}$ & reference temperature of Knudsen distribution (prefixed by $k$ implies energy in SI) & $eV$ \\
|
426 | 431 | $T_{ref}$ & reference temperature (prefixed by $k$ implies energy in SI) & $eV$ \\
|
427 | 432 | $T_s$ & characteristic temperature ($T_s=(L_s/t_s)^2/K_M$) & $eV$ \\
|
|
0 commit comments