@@ -345,8 +345,8 @@ let left_action_morphism f mf la lb = forall (g: ma) (x: a). lb.act (mf g) (f x)
345345Module after type checking:
346346module Monoid
347347Declarations: [
348- let right_unitality_lemma m u476 mult = forall (x: m). mult x u476 == x
349- let left_unitality_lemma m u476 mult = forall (x: m). mult u476 x == x
348+ let right_unitality_lemma m u466 mult = forall (x: m). mult x u466 == x
349+ let left_unitality_lemma m u466 mult = forall (x: m). mult u466 x == x
350350let associativity_lemma m mult = forall (x: m) (y: m) (z: m). mult (mult x y) z == mult x (mult y z)
351351unopteq
352352type monoid (m: Type) =
@@ -382,25 +382,25 @@ val monoid__uu___haseq: Prims.l_True /\
382382
383383
384384
385- let intro_monoid m u476 mult = Monoid.Monoid u476 mult () () () <: Prims.Pure (Monoid.monoid m)
385+ let intro_monoid m u466 mult = Monoid.Monoid u466 mult () () () <: Prims.Pure (Monoid.monoid m)
386386let nat_plus_monoid =
387387 let add x y = x + y <: Prims.nat in
388388 Monoid.intro_monoid Prims.nat 0 add
389389let int_plus_monoid = Monoid.intro_monoid Prims.int 0 Prims.op_Addition
390390let conjunction_monoid =
391- let u474 = FStar.Pervasives.singleton Prims.l_True in
391+ let u464 = FStar.Pervasives.singleton Prims.l_True in
392392 let mult p q = p /\ q <: Prims.prop in
393393 let left_unitality_helper p =
394- (assert (mult u474 p <==> p);
395- FStar.PropositionalExtensionality.apply (mult u474 p) p)
394+ (assert (mult u464 p <==> p);
395+ FStar.PropositionalExtensionality.apply (mult u464 p) p)
396396 <:
397- FStar.Pervasives.Lemma (ensures mult u474 p == p)
397+ FStar.Pervasives.Lemma (ensures mult u464 p == p)
398398 in
399399 let right_unitality_helper p =
400- (assert (mult p u474 <==> p);
401- FStar.PropositionalExtensionality.apply (mult p u474 ) p)
400+ (assert (mult p u464 <==> p);
401+ FStar.PropositionalExtensionality.apply (mult p u464 ) p)
402402 <:
403- FStar.Pervasives.Lemma (ensures mult p u474 == p)
403+ FStar.Pervasives.Lemma (ensures mult p u464 == p)
404404 in
405405 let associativity_helper p1 p2 p3 =
406406 (assert (mult (mult p1 p2) p3 <==> mult p1 (mult p2 p3));
@@ -409,26 +409,26 @@ let conjunction_monoid =
409409 FStar.Pervasives.Lemma (ensures mult (mult p1 p2) p3 == mult p1 (mult p2 p3))
410410 in
411411 FStar.Classical.forall_intro right_unitality_helper;
412- assert (Monoid.right_unitality_lemma Prims.prop u474 mult);
412+ assert (Monoid.right_unitality_lemma Prims.prop u464 mult);
413413 FStar.Classical.forall_intro left_unitality_helper;
414- assert (Monoid.left_unitality_lemma Prims.prop u474 mult);
414+ assert (Monoid.left_unitality_lemma Prims.prop u464 mult);
415415 FStar.Classical.forall_intro_3 associativity_helper;
416416 assert (Monoid.associativity_lemma Prims.prop mult);
417- Monoid.intro_monoid Prims.prop u474 mult
417+ Monoid.intro_monoid Prims.prop u464 mult
418418let disjunction_monoid =
419- let u474 = FStar.Pervasives.singleton Prims.l_False in
419+ let u464 = FStar.Pervasives.singleton Prims.l_False in
420420 let mult p q = p \/ q <: Prims.prop in
421421 let left_unitality_helper p =
422- (assert (mult u474 p <==> p);
423- FStar.PropositionalExtensionality.apply (mult u474 p) p)
422+ (assert (mult u464 p <==> p);
423+ FStar.PropositionalExtensionality.apply (mult u464 p) p)
424424 <:
425- FStar.Pervasives.Lemma (ensures mult u474 p == p)
425+ FStar.Pervasives.Lemma (ensures mult u464 p == p)
426426 in
427427 let right_unitality_helper p =
428- (assert (mult p u474 <==> p);
429- FStar.PropositionalExtensionality.apply (mult p u474 ) p)
428+ (assert (mult p u464 <==> p);
429+ FStar.PropositionalExtensionality.apply (mult p u464 ) p)
430430 <:
431- FStar.Pervasives.Lemma (ensures mult p u474 == p)
431+ FStar.Pervasives.Lemma (ensures mult p u464 == p)
432432 in
433433 let associativity_helper p1 p2 p3 =
434434 (assert (mult (mult p1 p2) p3 <==> mult p1 (mult p2 p3));
@@ -437,12 +437,12 @@ let disjunction_monoid =
437437 FStar.Pervasives.Lemma (ensures mult (mult p1 p2) p3 == mult p1 (mult p2 p3))
438438 in
439439 FStar.Classical.forall_intro right_unitality_helper;
440- assert (Monoid.right_unitality_lemma Prims.prop u474 mult);
440+ assert (Monoid.right_unitality_lemma Prims.prop u464 mult);
441441 FStar.Classical.forall_intro left_unitality_helper;
442- assert (Monoid.left_unitality_lemma Prims.prop u474 mult);
442+ assert (Monoid.left_unitality_lemma Prims.prop u464 mult);
443443 FStar.Classical.forall_intro_3 associativity_helper;
444444 assert (Monoid.associativity_lemma Prims.prop mult);
445- Monoid.intro_monoid Prims.prop u474 mult
445+ Monoid.intro_monoid Prims.prop u464 mult
446446let bool_and_monoid =
447447 let and_ b1 b2 = b1 && b2 in
448448 Monoid.intro_monoid Prims.bool true and_
@@ -520,7 +520,7 @@ let _ =
520520 Monoid.intro_monoid_morphism Monoid.neg Monoid.disjunction_monoid Monoid.conjunction_monoid
521521let mult_act_lemma m a mult act =
522522 forall (x: m) (x': m) (y: a). act (mult x x') y == act x (act x' y)
523- let unit_act_lemma m a u478 act = forall (y: a). act u478 y == y
523+ let unit_act_lemma m a u468 act = forall (y: a). act u468 y == y
524524unopteq
525525type left_action (mm: Monoid.monoid m) (a: Type) =
526526 | LAct :
0 commit comments