-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsac_discret.py
270 lines (231 loc) · 13 KB
/
sac_discret.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from collections import deque
from itertools import count
from typing import Deque, NamedTuple
import torch
from torch import nn
import numpy as np
from torch.optim import Adam
from torch import Tensor
from torch.distributions import Categorical
import torch.nn.functional as F
from hex_engine import hexPosition
class SAC_Agent:
def __init__(self, field_size: int = 7, discount_rate: float = 0.9, training_episodes_per_eval_episode: int = 10, device: str = "cuda"):
self.field_size = field_size
self.discount_rate = discount_rate
self.training_episodes_per_eval_episode = training_episodes_per_eval_episode
self.device = device
self.eps = torch.tensor([1e-8], device=self.device)
self.learning_rate = 1e-3
self.gradient_clipping_norm = None
# Init all the estimators
self.critic_1 = Critic(field_size).to(self.device)
self.critic_2 = Critic(field_size).to(self.device)
self.critic_target_1 = Critic(field_size).to(self.device)
self.critic_target_2 = Critic(field_size).to(self.device)
self.critic_target_1.load_state_dict(self.critic_1.state_dict())
self.critic_target_2.load_state_dict(self.critic_2.state_dict())
self.actor = Actor(field_size).to(self.device)
# Init the optimizers
self.critic_1_optimizer = Adam(self.critic_1.parameters(), lr=self.learning_rate)
self.critic_2_optimizer = Adam(self.critic_2.parameters(), lr=self.learning_rate)
self.actor_optimizer = Adam(self.actor.parameters(), lr=self.learning_rate)
# Automatic entropy tuning
self.target_entropy = -np.log((1.0 / self.field_size**2)) * 0.98
self.log_alpha = torch.zeros(1, requires_grad=True, device=self.device)
self.alpha = self.log_alpha.exp()
self.alpha_optim = Adam([self.log_alpha], lr=self.learning_rate, eps=1e-4)
def produce_action_and_action_info(self, state: Tensor) -> tuple[Tensor, tuple[Tensor, Tensor], Tensor]:
# Get the action from the actor
valid_actions = state.round().int() == 0
action_probabilities = self.actor(state)
# Mask out the invalid actions and renormalize
action_probabilities = action_probabilities * valid_actions
action_probabilities = action_probabilities / torch.max(action_probabilities.sum(), self.eps)
max_probability_action = torch.argmax(action_probabilities, dim=-1)
action_distribution = Categorical(action_probabilities)
action = action_distribution.sample()
log_action_probabilities = torch.log(torch.max(action_probabilities, self.eps))
return action, (action_probabilities, log_action_probabilities), max_probability_action
def calculate_critic_losses(self, state_batch: Tensor, action_batch: Tensor, reward_batch: Tensor, next_state_batch: Tensor, mask_batch: Tensor) -> tuple[Tensor, Tensor]:
with torch.no_grad():
_, (action_probabilities, log_action_probabilities), _ = self.produce_action_and_action_info(next_state_batch)
qf1_next_target = self.critic_target_1(next_state_batch)
qf2_next_target = self.critic_target_2(next_state_batch)
min_qf_next_target = action_probabilities * (torch.min(qf1_next_target, qf2_next_target) - self.alpha * log_action_probabilities)
min_qf_next_target = min_qf_next_target.sum(dim=1).unsqueeze(-1)
next_q_value = reward_batch + mask_batch.float() * self.discount_rate * (min_qf_next_target)
qf1 = self.critic_1(state_batch).gather(1, action_batch.long())
qf2 = self.critic_2(state_batch).gather(1, action_batch.long())
qf1_loss = F.mse_loss(qf1, next_q_value)
qf2_loss = F.mse_loss(qf2, next_q_value)
return qf1_loss, qf2_loss
def take_optimisation_step(self, optimizer: torch.optim.Optimizer, network: nn.Module, loss: Tensor, clipping_norm=None, retain_graph=False):
"""Takes an optimisation step by calculating gradients given the loss and then updating the parameters"""
if not isinstance(network, list): network = [network]
optimizer.zero_grad() #reset gradients to 0
loss.backward(retain_graph=retain_graph) #this calculates the gradients
if clipping_norm is not None:
for net in network:
torch.nn.utils.clip_grad_norm_(net.parameters(), clipping_norm) #clip gradients to help stabilise training
optimizer.step() #this applies the gradients
def soft_update_of_target_network(self, local_model: nn.Module, target_model: nn.Module, tau: float):
"""Updates the target network in the direction of the local network but by taking a step size
less than one so the target network's parameter values trail the local networks. This helps stabilise training"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
def update_critic_parameters(self, critic_loss_1: Tensor, critic_loss_2: Tensor, target_update_rate: float):
"""Updates the parameters for both critics"""
self.take_optimisation_step(self.critic_1_optimizer, self.critic_1, critic_loss_1, self.gradient_clipping_norm)
self.take_optimisation_step(self.critic_2_optimizer, self.critic_2, critic_loss_2, self.gradient_clipping_norm)
self.soft_update_of_target_network(self.critic_1, self.critic_target_1, target_update_rate)
self.soft_update_of_target_network(self.critic_2, self.critic_target_2, target_update_rate)
def calculate_actor_loss(self, state_batch: Tensor) -> tuple[Tensor, Tensor]:
_, (action_probabilities, log_action_probabilities), _ = self.produce_action_and_action_info(state_batch)
qf1_pi = self.critic_1(state_batch)
qf2_pi = self.critic_2(state_batch)
min_qf_pi = torch.min(qf1_pi, qf2_pi)
inside_term = self.alpha * log_action_probabilities - min_qf_pi
policy_loss = (action_probabilities * inside_term).sum(dim=1).mean()
log_action_probabilities = torch.sum(log_action_probabilities * action_probabilities, dim=1)
return policy_loss, log_action_probabilities
def calculate_entropy_tuning_loss(self, log_pi: Tensor) -> Tensor:
alpha_loss = -(self.log_alpha * (log_pi + self.target_entropy).detach()).mean()
return alpha_loss
def update_actor_parameters(self, actor_loss: Tensor, alpha_loss: Tensor):
self.take_optimisation_step(self.actor_optimizer, self.actor, actor_loss, self.gradient_clipping_norm)
self.take_optimisation_step(self.alpha_optim, None, alpha_loss, None)
self.alpha = self.log_alpha.exp()
def get_state(self, env: hexPosition) -> Tensor:
return torch.tensor(
np.asarray(env.board).flatten(),
device=self.device
).unsqueeze(0).float()
def learn(self, max_episodes: int, env: hexPosition, batch_size: int = 32, target_net_update_rate=0.005) -> tuple[list[float], list[int]]:
replay_memory = ReplayMemory(10000)
episode_rewards = []
episode_durations = []
for episode in range(max_episodes):
env.reset()
episode_reward = 0.0
state = self.get_state(env)
# Normally one would use a fixed number of steps, but in our case it is simpler to just
# stop when the game is over
for step in count():
# Sample an action
action, _, _ = self.produce_action_and_action_info(state)
try:
env.moove(
(action.item() // self.field_size, action.item() % self.field_size)
)
except:
print(f"Action: {action}")
print(f"Board: {env.board}")
if env.winner == 0:
env._random_moove()
done = env.winner != 0
reward = torch.tensor(
[1 if env.winner == 1 else 0],
device=self.device,
)
episode_reward += reward.item() # Accumulate reward
next_state = None if done else self.get_state(env)
replay_memory.save(state, action, next_state, reward)
state = next_state
if done:
episode_durations.append(step + 1)
episode_rewards.append(episode_reward)
break
print(
f"\rEpisode {episode} of {max_episodes}: Avg. Reward: {np.mean(episode_rewards[-50:]):.3f}, Avg. Duration: {np.mean(episode_durations[-50:]):.3f}",
end="",
)
for training_step in range(self.training_episodes_per_eval_episode):
batch_transitions = replay_memory.sample(batch_size)
batch = TransitionData(*zip(*batch_transitions))
non_final_mask = torch.tensor(
tuple(map(lambda s: s is not None, batch.next_state)),
device=self.device,
dtype=torch.bool,
).unsqueeze(1)
default_state = torch.zeros(1, self.field_size**2, device=self.device)
next_states_batch = torch.cat(
[s if s is not None else default_state for s in batch.next_state]
)
state_batch = torch.cat(batch.state)
action_batch = torch.stack(batch.action)
reward_batch = torch.stack(batch.reward)
critic_1_loss, critic_2_loss = self.calculate_critic_losses(
state_batch, action_batch, reward_batch, next_states_batch, non_final_mask
)
self.update_critic_parameters(critic_1_loss, critic_2_loss, target_net_update_rate)
actor_loss, log_action_probabilities = self.calculate_actor_loss(state_batch)
alpha_loss = self.calculate_entropy_tuning_loss(log_action_probabilities)
self.update_actor_parameters(actor_loss, alpha_loss)
print()
print("Complete")
return episode_rewards, episode_durations
class BaseFeedForwardNN(nn.Module):
def __init__(self, input_size: int, hidden_size: int, output_size: int, hidden_layers: int):
super(BaseFeedForwardNN, self).__init__()
self.input_layer = nn.Linear(input_size, hidden_size)
self.hidden_layers = nn.ModuleList(
[nn.Linear(hidden_size, hidden_size) for _ in range(hidden_layers)]
)
self.output_layer = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = F.relu(self.input_layer(x))
for hidden_layer in self.hidden_layers:
x = F.relu(hidden_layer(x))
return self.output_layer(x)
class Critic(BaseFeedForwardNN):
def __init__(self, field_size, hidden_size:int = 256, hidden_layers:int = 2):
super(Critic, self).__init__(field_size ** 2, hidden_size, field_size ** 2, hidden_layers)
def forward(self, x):
x = super().forward(x)
return nn.Sigmoid()(x)
class Actor(BaseFeedForwardNN):
def __init__(self, field_size, hidden_size:int = 256, hidden_layers:int = 2):
super(Actor, self).__init__(field_size ** 2, hidden_size, field_size ** 2, hidden_layers)
def forward(self, x):
x = super().forward(x)
return nn.Softmax(dim=1)(x)
class TransitionData(NamedTuple):
state: Tensor
action: Tensor
next_state: Tensor
reward: Tensor
class ReplayMemory(object):
"""
Store transitions consisting of 'state', 'action', 'next_state', 'reward'.
"""
def __init__(self, length: int):
self.memory: Deque[TransitionData] = Deque(maxlen=length)
def save(self, state, action, next_state, reward):
self.memory.append(TransitionData(state, action, next_state, reward))
def sample(self, batch_size: int):
indices = np.random.choice(len(self.memory), batch_size, replace=True)
return [self.memory[i] for i in indices]
def __len__(self):
return len(self.memory)
def plot_results(episode_rewards, episode_durations):
import matplotlib.pyplot as plt
t = np.arange(len(episode_rewards))
avg_rewards = [np.mean(episode_rewards[max(0, i-50):i+1]) for i in range(len(episode_rewards))]
avg_durations = [np.mean(episode_durations[max(0, i-50):i+1]) for i in range(len(episode_durations))]
fig, ax1 = plt.subplots()
ax2 = plt.gca().twinx()
ax2.plot(t, avg_durations, 'r--', linewidth=0.5)
ax1.plot(t, avg_rewards, 'k', linewidth=2)
ax1.set_ylim([0, 1])
ax1.set_title("SAC Discrete Hex")
ax1.set_xlabel("Episode")
ax1.set_ylabel("Reward")
ax2.set_ylabel('Duration', color='r')
plt.show()
if __name__ == "__main__":
board_size = 4
env = hexPosition(board_size)
agent = SAC_Agent(board_size)
eposide_rewards, episode_durations = agent.learn(2000, env)
plot_results(eposide_rewards, episode_durations)