forked from UW-EXP/GLOBEM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdl_erm.py
510 lines (446 loc) · 27.4 KB
/
dl_erm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
"""
Implementation of Empirical Risk Minimization (ERM) algorithm for depression detection
reference:
Vladimir N Vapnik. 1999. An overview of statistical learning theory.
IEEE transactions on neural networks 10, 5 (1999), 988–999.
"""
import os, sys
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from utils.common_settings import *
from algorithm.base import DepressionDetectionAlgorithmBase
from data_loader.data_loader_dl import data_loader_np, prep_repo_np_dict_feature_prep, MultiSourceDataGenerator, dl_feat_preparation
from data_loader.data_loader_ml import DatasetDict, DataRepo, DataRepo_tf
from algorithm.base import DepressionDetectionClassifierBase
from utils import network, path_definitions
from tensorflow.python.data.ops.dataset_ops import FlatMapDataset
class DepressionDetectionClassifier_DL_erm(DepressionDetectionClassifierBase):
"""Basic ERM-based deep learning algorithm. Other dl classifier can extend this class"""
def __init__(self, config):
self.config = config
self.model_params = self.config["model_params"]
self.training_params = self.config["training_params"]
# define network architecture
if (self.model_params["arch"] == "1dCNN"):
self.clf = network.build_1dCNN(**self.model_params)
elif (self.model_params["arch"] == "2dCNN"):
self.clf = network.build_2dCNN(**self.model_params)
elif (self.model_params["arch"] == "LSTM"):
self.clf = network.build_LSTM(**self.model_params)
elif (self.model_params["arch"] == "Transformer"):
self.clf = network.build_Transformer(**self.model_params)
# define results saving folder
folder_name = self.config["data_loader"]["training_dataset_key"]
self.results_save_folder = os.path.join(path_definitions.TMP_PATH, self.config["name"],
"input_shape-" + "_".join([str(i) for i in self.model_params["input_shape"]]),
self.config["training_params"]["eval_task"],
folder_name,
)
Path(self.results_save_folder).mkdir(parents=True, exist_ok=True)
def __assert__(self, X):
""" Check whether input is expected """
if (type(X) is dict):
# if a dictionary, each value should be a tf dataset
self.flag_X_dict = True
for k, v in X.items():
assert type(v) is FlatMapDataset
else:
# if not a directionary, itself should be tf dataset
self.flag_X_dict = False
assert type(X) is FlatMapDataset
def prep_eval_callbacks(self, X):
""" Callback function for evaluation on train/val/test set """
ds_train = X["val_whole"]
if "test" in X:
ds_test = X["test"]
elif "val" in X:
ds_test = X["val"]
else:
ds_test = None
return network.EvaluationBasicCallback(model_obj=self,
dataset_train=ds_train, dataset_test=ds_test,
interval=1, verbose=self.training_params["verbose"])
def prep_callbacks(self, X):
""" Define callback functions. Can be extended by other algorithms. """
self.earlystopping = EarlyStopping(
monitor="val_loss", mode="min",
patience=1000, verbose=0,
)
self.model_saver = network.ModelMemoryCheckpoint()
self.tqdm_callback = tfa.callbacks.TQDMProgressBar(show_epoch_progress = False)
# The purpose is to evaluate each step's performance
if (type(X) is dict):
assert "val_whole" in X
self.eval_callback = self.prep_eval_callbacks(X)
return [self.earlystopping, self.model_saver, self.eval_callback, self.tqdm_callback]
else:
self.eval_callback = None
return [self.earlystopping, self.model_saver, self.tqdm_callback]
def find_best_epoch_direct(self, df_results_record, metrics = "val_loss", stop_idx = 1000):
""" Pick the best epoch based on the train/val results """
df_results_record_buf = df_results_record.reset_index(drop=True)
if ("loss" in metrics):
epoch_idx = df_results_record_buf.iloc[:stop_idx][metrics].idxmin()
else:
epoch_idx = df_results_record_buf.iloc[:stop_idx][metrics].idxmax()
if (pd.isna(epoch_idx)):
epoch_idx = -1
return df_results_record_buf.iloc[epoch_idx]["epoch"]
def find_best_epoch_on_test(self, df_results_record, metrics = "logs_val_loss",
test_metrics_ = "balanced_acc_test", stop_idx = 1000):
""" Pick the best epoch based on the test results - involve a bit information leakage """
df_buf = deepcopy(df_results_record)
flag_metrics_flip = -1 if "loss" in metrics else 1 # if loss, will look for minimum
if (test_metrics_ in df_buf):
test_metrics = test_metrics_
test_cfmtx = "cfmtx_test"
else:
test_metrics = "balanced_acc_train"
test_cfmtx = "cfmtx_train"
best_metric_train_list = []
best_metric_test_list = []
best_metric_test_cfmtx_list = []
best_metric_train = -9999
current_metric_test = 0
best_metric_train = flag_metrics_flip * df_buf.iloc[0][metrics]
current_metric_test = df_buf.iloc[0][test_metrics]
current_metric_test_cfmtx = df_buf.iloc[0][test_cfmtx]
for idx, row in df_buf.iterrows():
if ((flag_metrics_flip * row[metrics]) > best_metric_train):
best_metric_train = flag_metrics_flip * row[metrics]
current_metric_test = row[test_metrics]
current_metric_test_cfmtx = row[test_cfmtx]
best_metric_train_list.append(best_metric_train)
best_metric_test_list.append(current_metric_test)
best_metric_test_cfmtx_list.append(current_metric_test_cfmtx)
df_buf[f"best_tune_train:{metrics}"] = best_metric_train_list
df_buf[f"best_tune:{test_metrics}"] = best_metric_test_list
df_buf[f"best_tune:{test_cfmtx}"] = best_metric_test_cfmtx_list
return df_buf.iloc[df_buf.iloc[:stop_idx][f"best_tune:{test_metrics}"].argmax()]["epoch"]
def save_epoch_results(self, df_results_record):
""" Save evalution results """
save_obj = {
"df_results_record": df_results_record,
"model_repo_dict": self.model_saver.model_repo_dict
}
if "clustering" not in self.config["name"]:
file_path = os.path.join(self.results_save_folder, "results_saving.pkl")
else:
file_path = os.path.join(self.results_save_folder, f"results_saving_c{self.current_cluster_idx}.pkl")
with open(file_path, "wb") as f:
pickle.dump(save_obj, f)
def find_best_epoch(self):
""" Find the best epoch. The specific strategy is determined by the config file.
Default it will be based on the train/val set"""
if (self.eval_callback is not None):
df_results_record = pd.DataFrame(self.eval_callback.results_record)
if (self.training_params["best_epoch_strategy"] == "direct"):
best_epoch = int(self.find_best_epoch_direct(df_results_record,
metrics = "balanced_acc_train" if ("balanced_acc_train" in df_results_record and
not pd.isna(df_results_record["balanced_acc_train"]).any())
else "logs_loss"))
elif (self.training_params["best_epoch_strategy"] == "on_test"):
best_epoch = int(self.find_best_epoch_on_test(df_results_record,
metrics = "balanced_acc_train" if ("balanced_acc_train" in df_results_record and
not pd.isna(df_results_record["balanced_acc_train"]).any())
else "logs_loss"))
else:
df_results_record = pd.DataFrame(self.log_history)
df_results_record.columns = ["logs_" + c for c in df_results_record.columns]
df_results_record["epoch"] = np.arange(len(df_results_record))
best_epoch = int(self.find_best_epoch_direct(df_results_record, metrics = "logs_loss"))
if (self.training_params["verbose"] > 0):
print("best epoch ", best_epoch)
self.save_epoch_results(df_results_record)
return best_epoch, df_results_record
def fit(self, X, y):
tf.keras.utils.set_random_seed(42)
self.__assert__(X)
model_optimizer = network.prep_model_optimizer(self.training_params)
self.clf.compile(loss = 'categorical_crossentropy', optimizer = model_optimizer, metrics="acc")
callbacks = self.prep_callbacks(X)
# if the skip training is turned off, just do the regular training
if (self.training_params.get("skip_training", False) == False):
history = self.clf.fit(x = X["train"] if self.flag_X_dict else X,
steps_per_epoch = self.training_params["steps_per_epoch"],
epochs = self.training_params["epochs"],
validation_data = X["val"] if self.flag_X_dict else X,
verbose = 1 if self.training_params["verbose"] > 1 else 0,
callbacks = callbacks
)
self.log_history = history.history
best_epoch, df_results_record = self.find_best_epoch()
self.clf.set_weights(self.model_saver.model_repo_dict[best_epoch])
else: # otherwise, load the saving results to avoid the re-training. Use it carefully!
df_results_record = self.fit_skip_training()
return df_results_record
def fit_skip_training(self):
""" Only applicable when the model has been trained and the results have been saved. """
# dl models except clustering as its intermediate results will be saved separately for each cluster
if "clustering" not in self.config["name"]:
file_path = os.path.join(self.results_save_folder, "results_saving.pkl")
else:
file_path = os.path.join(self.results_save_folder, f"results_saving_c{self.current_cluster_idx}.pkl")
with open(file_path, "rb") as f:
save_obj = pickle.load(f)
df_results_record = save_obj["df_results_record"]
self.model_saver = network.ModelMemoryCheckpoint()
self.model_saver.model_repo_dict = save_obj["model_repo_dict"]
if (self.training_params["best_epoch_strategy"] == "direct"):
best_epoch = int(self.find_best_epoch_direct(df_results_record,
metrics = "balanced_acc_train" if ("balanced_acc_train" in df_results_record and
not pd.isna(df_results_record["balanced_acc_train"]).any())
else "logs_loss"))
elif (self.training_params["best_epoch_strategy"] == "on_test"):
best_epoch = int(self.find_best_epoch_on_test(df_results_record,
metrics = "balanced_acc_train" if ("balanced_acc_train" in df_results_record and
not pd.isna(df_results_record["balanced_acc_train"]).any())
else "logs_loss"))
if (self.training_params["verbose"] > 0):
print("skip training, best epoch", best_epoch)
self.clf.set_weights(self.model_saver.model_repo_dict[best_epoch])
return df_results_record
def predict(self, X, y=None):
self.__assert__(X)
if (self.flag_X_dict):
X_ = X["val_whole"] # only use the whole val set for eval
else:
X_ = X
for data, label in X_:
return np.argmax(self.clf.predict(data), axis = 1)
def predict_proba(self, X, y=None):
self.__assert__(X)
if (self.flag_X_dict):
X_ = X["val_whole"] # only use the whole val set for eval
else:
X_ = X
for data, label in X_:
return self.clf.predict(data)
class DepressionDetectionAlgorithm_DL_erm(DepressionDetectionAlgorithmBase):
"""Basic deep-learning based depression detection algorithm. Other dl algorithms can extend this class"""
def __init__(self, config_dict = None, config_name = "dl_erm_1dcnn"):
super().__init__()
if (config_dict is None):
with open(os.path.join(path_definitions.CONFIG_PATH, f"{config_name}.yaml"), "r") as f:
self.config = yaml.safe_load(f)
else:
self.config = config_dict
ds_keys_dict = {
pred_target: global_config["all"]["ds_keys"] for pred_target in global_config["all"]["prediction_tasks"]
}
# DL models will preload the np pkl files. This is a different structure of traditional model pipeline.
self.data_repo_np_dict = data_loader_np(ds_keys_dict=ds_keys_dict,
flag_normalize=self.config["feature_definition"]["use_norm_features"],
flag_more_feat_types=global_config["all"]["flag_more_feat_types"])
feat_prep = dl_feat_preparation(config_name="dl_feat_prep",
flag_more_feat_types=global_config["all"]["flag_more_feat_types"])
self.data_repo_np_dict = prep_repo_np_dict_feature_prep(self.data_repo_np_dict,
selected_feature_idx=feat_prep.selected_feature_idx, ndim=self.config["model_params"]["input_dim"])
self.input_shape_dict = {}
for pt, data_repo_np_dict_pt in self.data_repo_np_dict.items():
self.input_shape_dict[pt] = {}
ds_keys = list(data_repo_np_dict_pt.keys())
for ds, data_repo_np_ptds in data_repo_np_dict_pt.items():
self.input_shape_dict[pt][ds] = data_repo_np_ptds.X.shape[1:]
for ds2 in ds_keys[1:]:
assert self.input_shape_dict[pt][ds_keys[0]] == self.input_shape_dict[pt][ds2]
self.input_shape_dict[pt] = list(self.input_shape_dict[pt][ds_keys[0]])
self.data_generator_obj = MultiSourceDataGenerator
self.data_generator_additional_args = {"train":{}, "nontrain":{}}
self.config["training_params"]["config_name"] = self.config["name"]
# if there is global_config, override some params
with open(os.path.join(path_definitions.CONFIG_PATH, f"global_config.yaml"), "r") as f:
self.global_config = yaml.safe_load(f)
if ("training_params" in self.global_config['dl']):
if ("best_epoch_strategy" in self.global_config['dl']["training_params"]):
self.config["training_params"]["best_epoch_strategy"] = \
self.global_config["dl"]["training_params"]["best_epoch_strategy"]
if ("skip_training" in self.global_config['dl']["training_params"]):
self.config["training_params"]["skip_training"] = \
self.global_config["dl"]["training_params"]["skip_training"]
# Extra pids dict for overlap pid training and test
with open(os.path.join(path_definitions.DATA_PATH, "additional_user_setup", "overlapping_pids.json"), "r") as f:
self.overlapping_pids_dict = json.load(f)
# Extra pids dict for single dataset split
with open(os.path.join(path_definitions.DATA_PATH, "additional_user_setup", "split_5fold_pids.json"), "r") as f:
self.split_5fold_pids_dict = json.load(f)
def prep_data_repo(self, dataset:DatasetDict, flag_train:bool = True) -> DataRepo_tf:
""" Prepare data repo for deep learning methods """
super().prep_data_repo(flag_train = flag_train)
tf.keras.utils.set_random_seed(42)
self.config["data_loader"]["training_dataset_key"] = dataset.key
ds_keys = dataset.key.split(":")
pred_target = dataset.prediction_target
input_shape = self.input_shape_dict[pred_target]
ds_key_all = self.data_repo_np_dict[pred_target].keys()
self.input_shape = input_shape
if (hasattr(dataset, "eval_task")):
self.config["training_params"]["eval_task"] = dataset.eval_task
else:
self.config["training_params"]["eval_task"] = ""
# extra processing for overlapping pids
# only effective for overlapping users evaluation pipeline
flag_overlap_filter = hasattr(dataset, "flag_overlap_filter")
if flag_overlap_filter:
overlap_group, overlap_ds_key_train = dataset.flag_overlap_filter.split(":")
assert overlap_group in ["test", "train"]
assert len(ds_keys) == 1
# extra processing for cross validation split
# only effective for single dataset evaluation pipeline
flag_split_filter = hasattr(dataset, "flag_split_filter")
if flag_split_filter:
split_group, split_fold = dataset.flag_split_filter.split(":")
assert split_group in ["test", "train"]
# extra processing for single daset within user split
# only effective for single dataset within user evaluation pipeline
flag_single_within_user_split = hasattr(dataset, "flag_single_within_user_split")
if flag_single_within_user_split:
within_split_group, within_split_ratio = dataset.flag_single_within_user_split.split(":")
assert within_split_group in ["train", "test"]
if within_split_group == "train":
within_split_ratio = float(within_split_ratio)
else:
within_split_ratio = 1 - float(within_split_ratio)
assert (0 < within_split_ratio) and (within_split_ratio < 1)
assert len(ds_keys) == 1
# at most one flag at one time
assert np.sum([1 if flag else 0 for flag in [flag_overlap_filter,flag_split_filter,flag_single_within_user_split]]) <= 1
data_repo_dict = {}
for ds_key in ds_keys:
data_repo_dict[ds_key] = self.data_repo_np_dict[pred_target][ds_key]
if flag_overlap_filter:
idx = np.where([p in set(self.overlapping_pids_dict[dataset.prediction_target][overlap_ds_key_train][ds_key]) for p in data_repo_dict[ds_key].pids])[0]
data_repo_dict[ds_key] = data_repo_dict[ds_key][idx]
if flag_split_filter:
if split_group == "test":
split_pids = np.array(self.split_5fold_pids_dict[dataset.prediction_target][ds_key][str(split_fold)])
elif split_group == "train":
split_pids = [self.split_5fold_pids_dict[dataset.prediction_target][ds_key][str(i)] for i in range(1,6) if i!=int(split_fold)]
split_pids = np.concatenate(split_pids)
idx = np.where([p in set(split_pids) for p in data_repo_dict[ds_key].pids])[0]
data_repo_dict[ds_key] = data_repo_dict[ds_key][idx]
if flag_single_within_user_split:
df_data_idx = pd.DataFrame(self.data_repo_np_dict[pred_target][ds_key].pids, columns=['pid']).groupby("pid").apply(lambda x : np.array(x.index))
df_data_idx = pd.DataFrame(df_data_idx, columns=["idx"])
df_data_idx["length"] = df_data_idx["idx"].apply(lambda x : len(x))
df_data_idx['length_test'] = df_data_idx["length"].apply(lambda x : int(np.ceil(x * (1-within_split_ratio))))
df_data_idx['idx_train'] = df_data_idx.apply(lambda row : row['idx'][:-row["length_test"]], axis = 1)
df_data_idx['idx_test'] = df_data_idx.apply(lambda row : row['idx'][-row["length_test"]:], axis = 1)
if within_split_group == "train":
data_idx = np.concatenate(df_data_idx["idx_train"].values)
elif within_split_group == "test":
data_idx = np.concatenate(df_data_idx["idx_test"].values)
data_repo_dict[ds_key] = data_repo_dict[ds_key][data_idx]
if (flag_train):
###############
# prepare a data generator for feed data into deep models
###############
# get the complete dataset and then split them into train and validation set
data_generator_whole = self.data_generator_obj(data_repo_dict = data_repo_dict,
is_training=False,
batch_size=1, shuffle=False,
flag_y_vector=self.config["model_params"]["flag_y_vector"],
**self.data_generator_additional_args.get("nontrain", {}),
)
self.data_generator_whole = data_generator_whole
# randomly take one sample from each person and use it as validation
data_repo_dict_train = {}
data_repo_dict_val = {}
for ds_key in ds_keys:
pids_tmp = data_generator_whole.person_list_dict[ds_key]
data_idx_train = []
data_idx_val = []
for pid in pids_tmp:
info = data_generator_whole.person_dict[pid]
data_idx = list(info["data_idx"])
if (len(data_idx) == 1): # person only have one datapoint, val will be the same as train
data_idx_val.append(data_idx[0])
data_idx_train += data_idx
else:
random_val_idx = np.random.randint(0, len(data_idx))
data_idx_val.append(data_idx[random_val_idx])
data_idx_train += data_idx[:random_val_idx] + data_idx[(random_val_idx+1):]
data_repo_dict_train[ds_key] = data_repo_dict[ds_key][data_idx_train]
data_repo_dict_val[ds_key] = data_repo_dict[ds_key][data_idx_val]
# training data generator
data_generator_train = self.data_generator_obj(data_repo_dict = data_repo_dict_train,
is_training=True,
shuffle=True,
flag_y_vector = self.config["model_params"]["flag_y_vector"],
**self.config["data_loader"], **self.data_generator_additional_args.get("train", {}),
)
# data generator with the same training data (for validation purpose)
data_generator_valtrain = self.data_generator_obj(data_repo_dict = data_repo_dict_train,
is_training=False,
batch_size=1, shuffle=False,
flag_y_vector = self.config["model_params"]["flag_y_vector"],
**self.data_generator_additional_args.get("nontrain", {}),
)
# data generator with the validation data (for validation purpose)
data_generator_val = self.data_generator_obj(data_repo_dict = data_repo_dict_val,
is_training=False,
batch_size=1, shuffle=False,
flag_y_vector = self.config["model_params"]["flag_y_vector"],
**self.data_generator_additional_args.get("nontrain", {}),
)
# wrap into the tensorflow API
dataset_tf_whole = tf.data.Dataset.from_generator(data_generator_whole,
output_signature=data_generator_whole.tf_output_signature)
dataset_tf_train = tf.data.Dataset.from_generator(data_generator_train,
output_signature=data_generator_train.tf_output_signature)
dataset_tf_valtrain = tf.data.Dataset.from_generator(data_generator_valtrain,
output_signature=data_generator_train.tf_output_signature)
dataset_tf_val = tf.data.Dataset.from_generator(data_generator_val,
output_signature=data_generator_val.tf_output_signature)
dataset_tf = {
"train": dataset_tf_train,
"valtrain": dataset_tf_valtrain,
"val": dataset_tf_val,
"val_whole": dataset_tf_whole
}
# If using all but one datasets for training, including the rest for testing.
# Under special setup (with a bit information leakage), the test set can be used for picking the "optimal" epoch
if (len(ds_keys) == len(ds_key_all) - 1):
ds_key_rest = [i for i in ds_key_all if i not in ds_keys][0]
ds_rest_dict = {ds_key_rest:self.data_repo_np_dict[pred_target][ds_key_rest]}
if flag_overlap_filter:
idx = np.where([p in set(self.overlapping_pids_dict[dataset.prediction_target][overlap_ds_key_train][ds_key_rest]) for p in ds_rest_dict[ds_key_rest].pids])[0]
ds_rest_dict[ds_key_rest] = ds_rest_dict[ds_key_rest][idx]
data_generator_test = self.data_generator_obj(data_repo_dict = ds_rest_dict,
is_training=False,
batch_size=1, shuffle=False,
flag_y_vector = self.config["model_params"]["flag_y_vector"],
**self.data_generator_additional_args.get("nontrain", {}),
)
dataset_tf_test = tf.data.Dataset.from_generator(data_generator_test,
output_signature=data_generator_test.tf_output_signature)
dataset_tf.update({"test": dataset_tf_test})
else:
# If only prepare the testing set, the process is simpler
data_generator = self.data_generator_obj(data_repo_dict = data_repo_dict,
is_training=False,
batch_size=1, shuffle=False,
flag_y_vector = self.config["model_params"]["flag_y_vector"],
**self.data_generator_additional_args.get("nontrain", {}),
)
dataset_tf = tf.data.Dataset.from_generator(data_generator,
output_signature=data_generator.tf_output_signature)
if (flag_train):
# If training, the dataset_tf is a dictionary of data generator
# The classifier will take care of it properly
self.data_repo = DataRepo_tf(X = dataset_tf, y = None, pids = None)
else:
# If testing, the dataset_tf is just one data generator
for data_tmp, label_tmp in dataset_tf: break # take one step
self.data_repo = DataRepo_tf(X = dataset_tf,
y = np.argmax(data_tmp["input_y"], axis=1) if self.config["model_params"]["flag_y_vector"] else np.array(data_tmp["input_y"]),
pids = np.array(data_tmp["input_person"]))
return self.data_repo
def prep_model(self, data_train: DataRepo, criteria: str = "balanced_acc") -> sklearn.base.ClassifierMixin:
""" Define a deep-leanrning classifier and add additional necessary parammeters """
super().prep_model()
self.config["model_params"].update(
{"input_shape": self.input_shape,
"flag_return_embedding":False, "flag_embedding_norm":False,
"flag_input_dict":True}
)
return DepressionDetectionClassifier_DL_erm(config = self.config)