-
Notifications
You must be signed in to change notification settings - Fork 0
/
scRNA-Seurat-workflow-parameters.yaml
executable file
·66 lines (50 loc) · 1.46 KB
/
scRNA-Seurat-workflow-parameters.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
project_name: sample_1
input_data: "seurat_obj" # input data type, either "seurat_obj" or "cell_ranger"
input_location: "seurat.rds"
results_dir: "./results/"
species: human # name of species either "mouse" or "human"
cell_ranger:
min.cells: 3 #keep genes expressed at least `min.cells`
strip.suffix: True # Remove trailing '-1' in all cell barcodes
filtering:
do_filtering: True # if input_data: "seurat_obj" do subsetting, if input_data: "cell_ranger", do filtering
nCount_RNA_min: 5000
nCount_RNA_max: 100000
nFeature_RNA_min: 2000
nFeature_RNA_max: 10000
percent.mt: 5
subsetting:
cell_label: seurat_clusters # cell grouping, can be cluster label or cell type or ...
value: "all" # comma-separated groups to be included in the analysis. "all" means include all cells
cell_cycle:
do_analysis: True
do_regression: all
normalization:
do_normalization: True
regress_mito: True
n_variable_features: 3000
dim_reduction:
do_PCA: True
assay: SCT
n_dims: 30
clustering:
do_clustering: True
knn : 30
resolution: 0.1 # use "auto" for automatic determination of the number of clusters
UMAP:
do_UMAP: True
markers:
find_markers : True
min.pct : 0.25
logfc.threshold : 0.5
p_val_adj: 0.05
#test.use : "LR"
#latent.vars : "sample"
top_markers : 3
GO_enrich: False
output_plots:
#generate_plots: False
reduction: umap # choose name of Seurat's DimReduc object
assay: RNA
genesOfinterest_file : "genesOfinterest.txt"
pointSize : 0.3