forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cond_fn.py
244 lines (216 loc) · 8.46 KB
/
cond_fn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines many boolean functions indicating when to step and reset.
"""
import tensorflow as tf
import gin.tf
@gin.configurable
def env_transition(agent, state, action, transition_type, environment_steps,
num_episodes):
"""True if the transition_type is TRANSITION or FINAL_TRANSITION.
Args:
agent: RL agent.
state: A [num_state_dims] tensor representing a state.
action: Action performed.
transition_type: Type of transition after action
environment_steps: Number of steps performed by environment.
num_episodes: Number of episodes.
Returns:
cond: Returns an op that evaluates to true if the transition type is
not RESTARTING
"""
del agent, state, action, num_episodes, environment_steps
cond = tf.logical_not(transition_type)
return cond
@gin.configurable
def env_restart(agent, state, action, transition_type, environment_steps,
num_episodes):
"""True if the transition_type is RESTARTING.
Args:
agent: RL agent.
state: A [num_state_dims] tensor representing a state.
action: Action performed.
transition_type: Type of transition after action
environment_steps: Number of steps performed by environment.
num_episodes: Number of episodes.
Returns:
cond: Returns an op that evaluates to true if the transition type equals
RESTARTING.
"""
del agent, state, action, num_episodes, environment_steps
cond = tf.identity(transition_type)
return cond
@gin.configurable
def every_n_steps(agent,
state,
action,
transition_type,
environment_steps,
num_episodes,
n=150):
"""True once every n steps.
Args:
agent: RL agent.
state: A [num_state_dims] tensor representing a state.
action: Action performed.
transition_type: Type of transition after action
environment_steps: Number of steps performed by environment.
num_episodes: Number of episodes.
n: Return true once every n steps.
Returns:
cond: Returns an op that evaluates to true if environment_steps
equals 0 mod n. We increment the step before checking this condition, so
we do not need to add one to environment_steps.
"""
del agent, state, action, transition_type, num_episodes
cond = tf.equal(tf.mod(environment_steps, n), 0)
return cond
@gin.configurable
def every_n_episodes(agent,
state,
action,
transition_type,
environment_steps,
num_episodes,
n=2,
steps_per_episode=None):
"""True once every n episodes.
Specifically, evaluates to True on the 0th step of every nth episode.
Unlike environment_steps, num_episodes starts at 0, so we do want to add
one to ensure it does not reset on the first call.
Args:
agent: RL agent.
state: A [num_state_dims] tensor representing a state.
action: Action performed.
transition_type: Type of transition after action
environment_steps: Number of steps performed by environment.
num_episodes: Number of episodes.
n: Return true once every n episodes.
steps_per_episode: How many steps per episode. Needed to determine when a
new episode starts.
Returns:
cond: Returns an op that evaluates to true on the last step of the episode
(i.e. if num_episodes equals 0 mod n).
"""
assert steps_per_episode is not None
del agent, action, transition_type
ant_fell = tf.logical_or(state[2] < 0.2, state[2] > 1.0)
cond = tf.logical_and(
tf.logical_or(
ant_fell,
tf.equal(tf.mod(num_episodes + 1, n), 0)),
tf.equal(tf.mod(environment_steps, steps_per_episode), 0))
return cond
@gin.configurable
def failed_reset_after_n_episodes(agent,
state,
action,
transition_type,
environment_steps,
num_episodes,
steps_per_episode=None,
reset_state=None,
max_dist=1.0,
epsilon=1e-10):
"""Every n episodes, returns True if the reset agent fails to return.
Specifically, evaluates to True if the distance between the state and the
reset state is greater than max_dist at the end of the episode.
Args:
agent: RL agent.
state: A [num_state_dims] tensor representing a state.
action: Action performed.
transition_type: Type of transition after action
environment_steps: Number of steps performed by environment.
num_episodes: Number of episodes.
steps_per_episode: How many steps per episode. Needed to determine when a
new episode starts.
reset_state: State to which the reset controller should return.
max_dist: Agent is considered to have successfully reset if its distance
from the reset_state is less than max_dist.
epsilon: small offset to ensure non-negative/zero distance.
Returns:
cond: Returns an op that evaluates to true if num_episodes+1 equals 0
mod n. We add one to the num_episodes so the environment is not reset after
the 0th step.
"""
assert steps_per_episode is not None
assert reset_state is not None
del agent, state, action, transition_type, num_episodes
dist = tf.sqrt(
tf.reduce_sum(tf.squared_difference(state, reset_state)) + epsilon)
cond = tf.logical_and(
tf.greater(dist, tf.constant(max_dist)),
tf.equal(tf.mod(environment_steps, steps_per_episode), 0))
return cond
@gin.configurable
def q_too_small(agent,
state,
action,
transition_type,
environment_steps,
num_episodes,
q_min=0.5):
"""True of q is too small.
Args:
agent: RL agent.
state: A [num_state_dims] tensor representing a state.
action: Action performed.
transition_type: Type of transition after action
environment_steps: Number of steps performed by environment.
num_episodes: Number of episodes.
q_min: Returns true if the qval is less than q_min
Returns:
cond: Returns an op that evaluates to true if qval is less than q_min.
"""
del transition_type, environment_steps, num_episodes
state_for_reset_agent = tf.stack(state[:-1], tf.constant([0], dtype=tf.float))
qval = agent.BASE_AGENT_CLASS.critic_net(
tf.expand_dims(state_for_reset_agent, 0), tf.expand_dims(action, 0))[0, :]
cond = tf.greater(tf.constant(q_min), qval)
return cond
@gin.configurable
def true_fn(agent, state, action, transition_type, environment_steps,
num_episodes):
"""Returns an op that evaluates to true.
Args:
agent: RL agent.
state: A [num_state_dims] tensor representing a state.
action: Action performed.
transition_type: Type of transition after action
environment_steps: Number of steps performed by environment.
num_episodes: Number of episodes.
Returns:
cond: op that always evaluates to True.
"""
del agent, state, action, transition_type, environment_steps, num_episodes
cond = tf.constant(True, dtype=tf.bool)
return cond
@gin.configurable
def false_fn(agent, state, action, transition_type, environment_steps,
num_episodes):
"""Returns an op that evaluates to false.
Args:
agent: RL agent.
state: A [num_state_dims] tensor representing a state.
action: Action performed.
transition_type: Type of transition after action
environment_steps: Number of steps performed by environment.
num_episodes: Number of episodes.
Returns:
cond: op that always evaluates to False.
"""
del agent, state, action, transition_type, environment_steps, num_episodes
cond = tf.constant(False, dtype=tf.bool)
return cond