-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFinalCodeWithGui.py
320 lines (267 loc) · 12.7 KB
/
FinalCodeWithGui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 1 00:09:36 2018
@author: USER
"""
"""
Created on Tue Jul 31 20:23:36 2018
@author: USER
"""
from PyQt5 import QtGui
from PyQt5 import QtCore
from PyQt5.QtWidgets import QApplication, QMainWindow, QLineEdit , QPushButton ,QMessageBox
import sys
import numpy as np
import pandas as pd
import warnings
from scipy.stats import pearsonr
dataFile='/Users/USER/Desktop/Thesis/Recommendation_code_kevon_15_7_18/AllCheckInfoDF_exceptTime.csv'
data=pd.read_csv(dataFile)
fileName = "/Users/USER/Desktop/Thesis/Recommendation_code_kevon_15_7_18/avgDistanceTravelDF.csv"
avgDistanceTravelDF = pd.read_csv(fileName)
centerOfVenuesDF = pd.read_csv("/Users/USER/Desktop/Thesis/Recommendation_code_kevon_15_7_18/centerOfVenuesDF.csv")
data=data.loc[data.CheckInCount>3]
userPlacedCheckInMatrix=pd.pivot_table(data, values='CheckInCount',
index=['userId'], columns=['venueId'])
def similarityPearson(user1,user2):
warnings.filterwarnings('error')
user1=np.array(user1)-np.nanmean(user1)
user2=np.array(user2)-np.nanmean(user2)
commonItemIds=[i for i in range(len(user1)) if user1[i]>0 and user2[i]>0]
if len(commonItemIds)==0:
return 0
else:
user1=np.array([user1[i] for i in commonItemIds])
user2=np.array([user2[i] for i in commonItemIds])
try:
return pearsonr(user1,user2)[0]
except RuntimeWarning:
return 0
predictedItemCheckinGlobal=pd.DataFrame()
def nearestNeighbourCheckins(activeUser,K):
similarityMatrix=pd.DataFrame(index=userPlacedCheckInMatrix.index,
columns=['Similarity'])
for i in userPlacedCheckInMatrix.index:
similarityMatrix.loc[i]=similarityPearson(userPlacedCheckInMatrix.loc[activeUser],
userPlacedCheckInMatrix.loc[i])
similarityMatrix=pd.DataFrame.sort_values(similarityMatrix,
['Similarity'],ascending=[0])
nearestNeighbours=similarityMatrix[:K]
neighbourItemRatings=userPlacedCheckInMatrix.loc[nearestNeighbours.index]
SumOfNearestNeighbourRatings=nearestNeighbours.loc[neighbourItemRatings.index,'Similarity'].sum()
predictItemCheckin=pd.DataFrame(index=userPlacedCheckInMatrix.columns, columns=['CheckInCount'])
for i in userPlacedCheckInMatrix.columns:
predictedCheckin=np.nanmean(userPlacedCheckInMatrix.loc[activeUser])
predict = 0
for j in neighbourItemRatings.index:
if userPlacedCheckInMatrix.loc[j,i]>0:
predict += (userPlacedCheckInMatrix.loc[j,i]
-np.nanmean(userPlacedCheckInMatrix.loc[j]))*nearestNeighbours.loc[j,'Similarity']
if SumOfNearestNeighbourRatings>0:
predict=predict/SumOfNearestNeighbourRatings
predictedCheckin+=predict
predictItemCheckin.loc[i,'CheckInCount']=predictedCheckin
global predictedItemCheckinGlobal
predictedItemCheckinGlobal=predictItemCheckin
return predictItemCheckin
def topNRecommendations(activeUser,N):
predictPlaceCheckins=nearestNeighbourCheckins(activeUser,10)
placeAlreadyChecked=list(userPlacedCheckInMatrix.loc[activeUser]
.loc[userPlacedCheckInMatrix.loc[activeUser]>0].index)
predictPlaceCheckins=predictPlaceCheckins.drop(placeAlreadyChecked)
topRecommendations=pd.DataFrame.sort_values(predictPlaceCheckins,
['CheckInCount'],ascending=[0])[:N]
topRecommendationTitles=(data.loc[data.venueId.isin(topRecommendations.index)])
topRecommendationTitles=topRecommendationTitles.drop_duplicates(['venueId'], keep='first')
return list(topRecommendationTitles.venueCategory)
def favoritePlaces(activeUser,N):
topPlaceCheckedIn=pd.DataFrame.sort_values(
data[data.userId==activeUser],['CheckInCount'],ascending=[0])[:N]
return list(topPlaceCheckedIn.venueCategory)
import math
def rootMeanSquareError(activeUser,K):
global predictedItemCheckinGlobal
rmse = 0
ratedItemIds = [i for i in userPlacedCheckInMatrix.columns
if userPlacedCheckInMatrix.loc[activeUser,i]>0]
N = len(ratedItemIds)
for i in ratedItemIds:
rmse+= math.pow((predictedItemCheckinGlobal.loc[i,'CheckInCount']-userPlacedCheckInMatrix.loc[activeUser,i]),2)
rmse = rmse/N
rmse = math.sqrt(rmse)
return rmse
def usersVenueDistancePreference(activeUser):
activeUserDF = data.loc[data.userId==activeUser,['distanceFromCenter','CheckInCount']]
avgDistance = float(avgDistanceTravelDF.loc[avgDistanceTravelDF.userId == activeUser,'avgDistanceTravel'])
closeVenue = 0 #no. of checkins venues which are less than and equal to average distance
farVenue = 0 #no. of checkins venues which are more than average distance
for index,row in activeUserDF.iterrows():
if row['distanceFromCenter']<= avgDistance:
closeVenue = closeVenue + row['CheckInCount']
else:
farVenue = farVenue + row['CheckInCount']
venuePreference = {'avgDistancePerCheckIn':avgDistance} #the average distance per checkIn
if closeVenue>farVenue: #likes closer places
venuePreference['likesPlace']='close'
elif closeVenue<farVenue: #likes farther places
venuePreference['likesPlace']='far'
elif closeVenue==farVenue: #likes both type of places equally
venuePreference['likesPlace']='both'
else:
print('Some Error Happened,Check!!')
return venuePreference
def topNRecommendationsFilterByCheckIn(activeUser,N):
N = N+10 #incerese the limit by 10 and send 10 more venue
predictPlaceCheckins=nearestNeighbourCheckins(activeUser,10)
placeAlreadyChecked=list(userPlacedCheckInMatrix.loc[activeUser]
.loc[userPlacedCheckInMatrix.loc[activeUser]>0].index)
predictPlaceCheckins=predictPlaceCheckins.drop(placeAlreadyChecked)
topRecommendations=pd.DataFrame.sort_values(predictPlaceCheckins,
['CheckInCount'],ascending=[0])[:N]
return topRecommendations
def topNRecommendationsFilterByDistanceAndCheckIn(activeUser,N):
topNRecommendations = topNRecommendationsFilterByCheckIn(activeUser,N).reset_index(drop=False)
predictedItemDF = venueDistanceFromActiveUser(activeUser,topNRecommendations)
userPreference = usersVenueDistancePreference(activeUser) #returns a dictionary
topRecommendationTitles=(data.loc[data.venueId.isin(predictedItemDF.venueId)])
if (userPreference['likesPlace'] =='close') | (userPreference['likesPlace'] =='both' ):
topRecommendationTitles = pd.DataFrame.sort_values(topRecommendationTitles,
['distanceFromCenter'],ascending=[True])[:N]
elif (userPreference['likesPlace'] =='far'):
topRecommendationTitles = pd.DataFrame.sort_values(topRecommendationTitles,
['distanceFromCenter'],ascending=[False])[:N]
else:
print('Something Went Wrong! Check Code')
topRecommendationTitles=topRecommendationTitles.drop_duplicates(['venueId'], keep='first')
return topRecommendationTitles
def distance(centerLat,centerLong,targetVenueLat,targetVenueLong):
lat1 = centerLat
lon1 = centerLong
lat2 = targetVenueLat
lon2 = targetVenueLong
radius = 6371 # km
dlat = math.radians(lat2-lat1)
dlon = math.radians(lon2-lon1)
a = math.sin(dlat/2) * math.sin(dlat/2) + math.cos(math.radians(lat1)) \
* math.cos(math.radians(lat2)) * math.sin(dlon/2) * math.sin(dlon/2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
d = radius * c
return d
def venueDistanceFromActiveUser(activeUser,predictedItemDF):
centerLat = centerOfVenuesDF.loc[centerOfVenuesDF.userId == activeUser,'latitude'].item()
centerLong = centerOfVenuesDF.loc[centerOfVenuesDF.userId == activeUser,'longitude'].item()
venueDistanceDF = pd.DataFrame()
for index,row in predictedItemDF.iterrows():
targetVenueLat = data.loc[data.venueId==row['venueId'],'latitude'][:1].item()
targetVenueLong = data.loc[data.venueId==row['venueId'],'longitude'][:1].item()
distanceFromCenter = distance(centerLat,centerLong,targetVenueLat,targetVenueLong)
copyData=[[row['venueId'],row['CheckInCount'],distanceFromCenter]]
df = pd.DataFrame(copyData,columns=['venueId','CheckInCount','distanceFromCenter'])
venueDistanceDF=venueDistanceDF.append(df)
return venueDistanceDF
class Window(QMainWindow):
def __init__(self):
super().__init__()
self.title = "Location-based Recommendation System"
self.top = 100
self.left = 100
self.width = 680
self.height = 500
self.InitWindow()
def InitWindow(self):
self.setWindowTitle(self.title)
self.setWindowIcon(QtGui.QIcon("location.png"))
self.setGeometry(self.top, self.left, self.width, self.height)
p = self.palette()
p.setColor(self.backgroundRole(), QtGui.QColor(100,100,150))
self.setPalette(p)
self.linedit=QLineEdit(self)
self.linedit.setPlaceholderText("Enter User Id")
self.linedit.setStyleSheet("font-size: 13px;")
self.linedit.move(200,200)
self.linedit.resize(280,40)
self.button=QPushButton("Recommend",self)
self.button.move(200,250)
self.button.resize(280,31)
self.button.setStyleSheet("background-color: #A1887f;font-size: 13px;color:white;font:bold;")
self.setStyleSheet("QMessageBox {background-color: #646496;font-size: 14px;}")
self.button.clicked.connect(self.onClick)
self.button=QPushButton("Exit",self)
self.button.clicked.connect(self.onClick2)
self.button.move(200,290)
self.button.resize(280,31)
self.button.setStyleSheet("background-color: #A1887f;font-size: 13px;color:white;font:bold;")
self.button.colorCount
self.show()
def onClick(self):
textValue = self.linedit.text()
try:
d= int(textValue)
if d>0 and d<1084:
recommend=topNRecommendationsFilterByDistanceAndCheckIn(d,3)
showMessage(self,recommend)
else:
showErrorMessage(self,"Sorry , This user id doesn't exist")
except ValueError:
showErrorMessage(self,"Please provide valid user id")
def onClick2(self):
self.close()
def showMessage(self,recommend):
catagoryType1=""
catagoryType2=""
catagoryType3=""
latitude1=""
latitude2=""
latitude3=""
longitude1=""
longitude2=""
longitude3=""
i=0
for index, row in recommend.iterrows():
if i==0:
catagoryType1=row["venueCategory"]
latitude1=row["latitude"]
longitude1=row["longitude"]
i=i+1
elif i==1:
catagoryType2=row["venueCategory"]
latitude2=row["latitude"]
longitude2=row["longitude"]
i=i+1
elif i==2:
catagoryType3=row["venueCategory"]
latitude3=row["latitude"]
longitude3=row["longitude"]
i=i+1
msg=QMessageBox()
msg.about(self, 'Recommendation',
"""<font color='white'><p><b><br/>Recommended Place For You</b></p>
<br/>
<p><b>Catagory :</b> """+catagoryType1+"""</p>
<p><b>Latitude: </b>"""+str(latitude1)+
"""<p><b>Longitude: </b>"""+str(longitude1)+"<br/>"+
"""<p><b>Catagory :</b> """+catagoryType2+"""</p>
<p><b>Latitude: </b>"""+str(longitude2)+
"""<p><b>Longitude: </b>"""+str(latitude2)+"<br/>"
"""<p><b>Catagory :</b> """+catagoryType3+"""</p>
<p><b>Latitude: </b>"""+str(latitude3)+
"""<p><b>Longitude: </b>"""+str(longitude3)+"<br/>"
"""</p>
<font color='#646496'><p><b>Email: </b>farhantanvir65@gmail@gmail.com</p>
<p><b>Copyright:</b> © 2014 farhandroid Ltd.
All rights reserved.
<p>This application can be used to recommend new place </p><br/>"""
)
def showErrorMessage(self, message):
msg=QMessageBox()
msg.about(self, 'Error',
"""<font color='white'><p><b><br/>"""+message+"""</b></p>
<br/>
</p>
<font color='#646496'><p><b>Email: </b>farhantanvir65@gmail@gmail.com</p>
<p>""")
app = QtCore.QCoreApplication.instance()
if app is None:
app = QApplication(sys.argv)
window = Window()#
sys.exit(app.exec())