-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzb_prediction.m
72 lines (50 loc) · 2 KB
/
zb_prediction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
function Xbar = zb_prediction(X0,w)
phi_omega = 0.30; % Displacement Velocity
phi_theta = 0.15; % Angular Velocity
T0 = 1.00; % Sampling Period
Z0 = zonoBundle(X0);
for sz = 1:size(Z0.Z,1)
c = Z0.Z{sz,1}.Z(:,1); c1 = c(1,:); c2 =c(2,:); c3 = c(3,:);
G = Z0.Z{sz,1}.Z(:,2:end); G1 = G(1,:); G2 =G(2,:); G3 = G(3,:);
%% f(eta) and its Bounds
eta = sym('eta',[size(G,2) 1]);
inv_eta = interval(-ones(size(G,2),1),ones(size(G,2),1));
func = {@(eta) (c1+G1*eta) + T0.*phi_omega.*cos((c3+G3*eta)) + w(1);...
@(eta) (c2+G2*eta) + T0.*phi_omega.*sin((c3+G3*eta)) + w(2);...
@(eta) (c3+G3*eta) + T0.*phi_theta + w(3)};
n = size(func,1);
grad{n} = [];
gradfunc{n} = [];
J{n} = [];
fupp{n} = [];
floww{n} = [];
HH{n} = [];
for i = 1:n
grad{i} = jacobian(func{i}(eta),eta);
gradfunc{i} = matlabFunction(grad{i},'Vars',{eta});
J{i} = interval(gradfunc{i}(inv_eta));
[~,~,fupp{i},floww{i},HH{i}] = decomp_signstable_modified(func{i},...
inv_eta.sup,inv_eta.inf,J{i}.sup,J{i}.inf);
end
%% Combinations of H matrices
[~,ind1] = min(fupp{1}-floww{1});
[~,ind2] = min(fupp{2}-floww{2});
[~,ind3] = min(fupp{3}-floww{3});
H = [HH{1}(ind1,:);HH{2}(ind2,:);HH{3}(ind3,:);];
gd_up = [fupp{1}(ind1,:);fupp{2}(ind2,:);fupp{3}(ind3,:)];
gd_low = [floww{1}(ind1,:);floww{2}(ind2,:);floww{3}(ind3,:)];
%% Zonotope Bundle
cf = 1/2*(gd_low + gd_up);
Gf = [H 1/2*diag(gd_up - gd_low)];
zf = zonotope(cf,Gf);
zb = zonoBundle(zf);
zb = reduce(zb,'girard',1);
zbi{sz} = zonoBundle(zb);
zbi{sz} = zonoBundle(polytope(zbi{sz}));
if sz == 1
poly_all = polytope(zbi{sz});
else
poly_all = and(polytope(zbi{sz}),poly_all);
end
end
Xbar = poly_all;