-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcca.py
260 lines (205 loc) · 7.12 KB
/
cca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# -*- coding: utf-8 -*-
"""CCA.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1N4uWYdOiUqBzi-uTQx_Xraz_2N7OkAN4
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.spatial.distance import cdist
from sklearn.metrics import pairwise_distances as pdist
from sklearn.decomposition import PCA
class CCA:
def __init__(self, p, lmbd, alpha):
"""
Creates the CCA object.
Parameters
----------
p : int
The new dimension.
lmbd : float
Distance limit to update points. It decreases over time : lambda(t) = lambda/(t+1).
alpha : float
Learning rate. It decreases over time : alpha(t) = alpha/(t+1)
"""
self.p = p
self.lmbd = lmbd
self.alpha = alpha
def _stress(self, dist_y, dist_x, lmbda):
"""
Calculates the stress function given the distances in original space (dist_y)
and the distances in reduced space (dist_x).
Parameters
----------
dist_y : numpy.array
Array with distances in original space.
dist_x : numpy.array
Array with distances in reduced space.
lmbda : float
Distance limit to update points.
"""
stress = np.mean((dist_y - dist_x)**2 * (lmbda > dist_x).astype(int))
return stress
def run(self, data_y, q_max=10, show=False, tol=1e-4):
"""
Method to reduce dimension. Every iteration run all points. The new data
is stored in attribute 'data_x'.
Parameters
----------
data_y : numpy.array
Array with the original data.
q_max : int (default = 10)
Number of iterations. Each iteration run all points in 'data_y'.
show : boolean (default = False)
If True, shows the stress curve along time.
tol : float (default = 1e-4)
Tolerance for the stopping criteria.
Returns
-------
data_x : numpy.array
New data representation.
"""
self.data_y = data_y
n = len(data_y)
triu = np.triu_indices(n, 1)
dist_y = pdist(data_y)
data_x = PCA(self.p).fit_transform(data_y)
stress = np.zeros(q_max)
print("Progress: 0.0%", end='\r')
for q in range(q_max):
alpha = max(0.001, self.alpha/(1+q))
lmbda = max(0.1, self.lmbd/(1+q))
for i in range(n):
dist_x = cdist(data_x[i].reshape(1,-1), data_x)
dy = np.delete(dist_y[i],i,0)
dx = np.delete(dist_x,i,1)
delta_x = (alpha*(lmbda > dx)*(dy - dx)/dx).reshape((-1,1))*(data_x[i] - np.delete(data_x, i, 0))
delta_x = np.insert(delta_x, i, 0, axis=0)
data_x -= delta_x
dist_x = pdist(data_x)
stress[q] = self._stress(dist_y[triu], dist_x[triu], lmbda)
if stress[q] < tol:
print("Progress: 100.00%")
print(f"Tol achieved in iteration {q}")
break
print(f"Progress: {round((q+1)*100/q_max,2)}% ", end='\r')
if show:
plt.plot(np.arange(q_max), stress, marker='.', c='black')
plt.xlabel("Iteration")
plt.ylabel("Stress")
plt.show()
print()
self.data_x = data_x
return data_x
def plotYX(self):
"""
Creates the dy dx Representation with the original and the reduced data.
"""
reduced_data = self.data_x
original_data = self.data_y
dy = []
dx = []
for i in range(reduced_data.shape[0]):
y1 = reduced_data[i,:]
x1 = original_data[i,:]
for j in range(i+1, reduced_data.shape[0]):
y2 = reduced_data[j,:]
x2 = original_data[j,:]
dy.append(np.linalg.norm(y2-y1))
dx.append(np.linalg.norm(x2-x1))
plt.scatter(dy,dx, c='black', s=1)
lims = [
np.min([plt.xlim(), plt.ylim()]), # min of both axes
np.max([plt.xlim(), plt.ylim()]), # max of both axes
]
plt.plot(lims, lims, 'k-', alpha=0.75, zorder=0)
plt.xlim(lims)
plt.ylim(lims)
plt.ylabel("Distance between points in original space")
plt.xlabel("Distance between points in reduced space")
plt.show()
if __name__ == '__main__':
sns.set()
# Circle
n = 150
theta = np.random.random(n)*7
x = np.cos(theta)*10 + np.random.normal(0,1,n); y = np.sin(theta)*10 + np.random.normal(0,1,n)
data = np.concatenate([x.reshape(-1,1), y.reshape(-1,1)], axis=1)
plt.scatter(x, y, s=3, c='black')
plt.axis('scaled')
plt.show()
cca = CCA(1, 25, 0.2)
cca.run(data, q_max=10)
cca.plotYX()
# Sphere
n = 500
theta = np.random.random(n)*7
phi = np.random.random(n)*7
x = np.cos(theta)*np.sin(phi)*10
y = np.sin(theta)*np.sin(phi)*10
z = np.cos(phi)*10
data = np.concatenate([x.reshape(-1,1), y.reshape(-1,1), z.reshape(-1,1)], axis=1)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x,y,z,s=1,c='black')
plt.show()
cca = CCA(2, 17, 0.2)
cca.run(data, q_max=10)
cca.plotYX()
plt.scatter(cca.data_x[:,0], cca.data_x[:,1], s=1, c='black')
plt.show()
# U-fold
n = 500
x = np.random.random(n)*10 - 5
y = -0.2*x**2
z = np.random.random(n)*10
data = np.concatenate([x.reshape(-1,1), y.reshape(-1,1), z.reshape(-1,1)], axis=1)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x,y,z,s=1,c='black')
plt.show()
cca = CCA(2, 12, 0.3)
cca.run(data, q_max=20)
cca.plotYX()
plt.scatter(cca.data_x[:,0], cca.data_x[:,1], s=1, c='black')
plt.show()
# Two rings
from scipy.spatial.transform import Rotation as R
n = 250
theta1 = np.random.random(n)*7
theta2 = np.random.random(n)*7
x1 = np.cos(theta1)*10 + 0.1*np.random.normal(0,1,n)
y1 = np.sin(theta1)*10 + 0.1*np.random.normal(0,1,n)
z1 = np.zeros(n)
data1 = np.concatenate([x1.reshape(-1,1), y1.reshape(-1,1), z1.reshape(-1,1)], axis=1)
x2 = np.cos(theta2)*10 + 0.1*np.random.normal(0,1,n)
y2 = np.sin(theta2)*10 + 10 + 0.1*np.random.normal(0,1,n)
z2 = np.zeros(n)
data2 = np.concatenate([x2.reshape(-1,1), y2.reshape(-1,1), z2.reshape(-1,1)], axis=1)
r1 = R.from_euler('y', 45, degrees=True)
r2 = R.from_euler('y', -45, degrees=True)
data1 = r1.apply(data1)
data2 = r2.apply(data2)
data = np.concatenate([data1, data2], axis=0)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(data1[:,0], data1[:,1], data1[:,2],s=1,c='black')
ax.scatter(data2[:,0], data2[:,1], data2[:,2],s=1,c='black')
plt.show()
cca = CCA(2, 16, 0.1)
cca.run(data, q_max=10)
cca.plotYX()
data_x = cca.data_x
data_x1 = data_x[:n,:]
data_x2 = data_x[n:,:]
plt.scatter(data_x1[:,0], data_x1[:,1], s=1, c='black')
plt.scatter(data_x2[:,0], data_x2[:,1], s=1, c='black')
limy = plt.ylim()
limx = plt.xlim()
lims = [ min(limy[0], limx[0]), max(limy[1], limx[1])]
plt.ylim(lims)
plt.xlim(lims)
plt.axis('scaled')
plt.show()