Skip to content

Latest commit

 

History

History
417 lines (387 loc) · 9.36 KB

README.md

File metadata and controls

417 lines (387 loc) · 9.36 KB

Rduinoiot

CRAN status Lifecycle: experimental R-CMD-check

Rduinoiot provides an easy way to connect to Arduino Iot Cloud API with R. Functions allow to exploit API methods for many purposes, manage your Arduino devices and dashboards and access to the data produced by sensors and sketches. This is not an official library by Arduino.

Installation

To get the current released version from CRAN:

install.packages("Rduinoiot")

To get the current development version from GitHub:

# install.packages("devtools")
devtools::install_github("FlavioLeccese92/Rduinoiot")

Authentication

In order to access the API methods you need to create an API key. This can be done by logging into your Arduino Cloud account and going to the page https://cloud.arduino.cc/home/api-keys/ and retrieve corresponding ARDUINO_API_CLIENT_ID and ARDUINO_API_CLIENT_SECRET.

library(Rduinoiot)
# Sys.setenv(ARDUINO_API_CLIENT_ID = 'INSERT CLIENT_ID HERE')
# Sys.setenv(ARDUINO_API_CLIENT_SECRET = 'INSERT CLIENT_SECRET HERE')

create_auth_token()
#> v Method succeeded

List things associated to the user

Things associated to the user account can be easily accessed using things_list(). This function will return detailed information, in particular things_id which are needed to access to properties.

tl = things_list()
#> v Method succeeded
created\_at href id name properties\_count sketch\_id timezone updated\_at user\_id device\_fqbn device\_id device\_name device\_type
2022-08-12 13:49:43 /iot/v1/things/0b18eba2-2aba-4740-8bec-5043403ecdd9 0b18eba2-2aba-4740-8bec-5043403ecdd9 Smart Garden 8 7a8e48be-e77d-401c-8ef7-05bd6e7b4c27 America/New\_York 2022-08-12 18:23:38 fd39fa13-cbac-49ac-9316-cbdf452ba1c9 NA NA NA NA
2022-08-12 18:24:07 /iot/v1/things/60ef7770-90c0-4068-ac3d-8a2301c3ac3d 60ef7770-90c0-4068-ac3d-8a2301c3ac3d Home Security Alarm 7 87cbfdec-b965-4a04-814a-232f65ac2f8e America/New\_York 2022-08-12 18:42:09 fd39fa13-cbac-49ac-9316-cbdf452ba1c9 NA NA NA NA
2022-08-12 21:57:28 /iot/v1/things/b6822400-2f35-4d93-b3e7-be919bdc5eba b6822400-2f35-4d93-b3e7-be919bdc5eba Personal Weather Station 5 0ef1dc12-dd8f-477e-963a-f7734b5ff141 America/New\_York 2022-08-12 21:59:46 fd39fa13-cbac-49ac-9316-cbdf452ba1c9 arduino:samd:mkrwifi1010 fa7ee291-8dc8-4713-92c7-9027969e4aa1 MFA mkrwifi1010
2022-08-12 13:32:16 /iot/v1/things/bc3b2763-a775-4fc8-95da-c03235d47f3a bc3b2763-a775-4fc8-95da-c03235d47f3a Thinking About You 2 3a558c37-f087-47e9-8f01-339b40fc6dd9 America/New\_York 2022-08-12 13:40:06 fd39fa13-cbac-49ac-9316-cbdf452ba1c9 NA NA NA NA

Real-time sensor data

Reading real-time humidity sensor of one of your devices can be done as follow:

thing_id = "b6822400-2f35-4d93-b3e7-be919bdc5eba"
property_id = "d1134fe1-6519-49f1-afd8-7fe9e891e778" # Humidity

data_ts = things_properties_timeseries(thing_id = thing_id,
                                       property_id = property_id,
                                       desc = FALSE, interval = 3600)
#> v Method succeeded
time value
2022-09-19 21:00:00 26.58458
2022-09-19 22:00:00 25.64852
2022-09-19 23:00:00 24.94009
2022-09-20 00:00:00 24.97513
2022-09-20 01:00:00 25.20554
2022-09-20 02:00:00 24.66693
2022-09-20 03:00:00 24.54984
2022-09-20 04:00:00 23.92859
2022-09-20 05:00:00 23.37810
2022-09-20 06:00:00 24.62635

Plotting the result

A catchy representation of humidity time series can be plotted, for instance, by using the library echarts4r by John Coene:

library(echarts4r)
library(dplyr)
library(lubridate)

data_ts = data_ts %>% mutate(time = with_tz(time, tzone = Sys.timezone()))

data_ts %>%
  e_charts(time) %>%
  e_line(value, name = "Value", color = "#007BFF", showSymbol = FALSE, smooth = TRUE,
         connectNulls = TRUE, animation = FALSE, emphasis = NULL,
         lineStyle = list(width = 1)) %>%
  e_title(left = 'center', text = "Humidity",
          subtext = "Last 1000 values averaged hourly",
          textStyle = list(fontWeight = 'lighter')) %>%
  e_grid(top = 70, right = 30, left = 50, bottom = 30) %>%
  e_x_axis(show = TRUE, type = "time") %>%
  e_y_axis(show = TRUE, scale = TRUE) %>%
  e_legend(show = FALSE)