Skip to content

Latest commit

 

History

History
121 lines (94 loc) · 3.03 KB

README.md

File metadata and controls

121 lines (94 loc) · 3.03 KB

WhatsApp Chatbot with RAG

This project implements a WhatsApp chatbot that uses Retrieval-Augmented Generation (RAG) to provide intelligent responses based on a knowledge base stored in a MongoDB database.

Project Structure

WhatsApp-Chatbot/
│
├── .env
├── .gitignore
├── README.md
├── requirements.txt
├── railway.json
│
├── src/
│   ├── __init__.py
│   ├── main.py
│   ├── config.py
│   ├── database/
│   │   ├── __init__.py
│   │   └── mongodb_client.py
│   ├── ai/
│   │   ├── __init__.py
│   │   ├── openai_client.py
│   │   └── rag_engine.py
│   ├── whatsapp/
│   │   ├── __init__.py
│   │   └── whatsapp_client.py
│   └── api/
│       ├── __init__.py
│       └── webhook.py
│
└── tests/
    ├── __init__.py
    ├── test_mongodb_client.py
    ├── test_openai_client.py
    ├── test_rag_engine.py
    └── test_whatsapp_client.py

Features

  • WhatsApp integration for receiving and sending messages
  • MongoDB (Cosmos DB) integration for storing and retrieving knowledge base
  • OpenAI GPT-4 integration for generating responses
  • Retrieval-Augmented Generation (RAG) for context-aware responses
  • Webhook for handling incoming WhatsApp messages
  • Containerized deployment using Railway

Prerequisites

  • Python 3.12
  • MySQL account
  • MongoDB account (or Cosmos DB with MongoDB API)
  • OpenAI API key
  • WhatsApp Business API access

Setup

  1. Clone the repository:

    git clone https://github.com/yourusername/WhatsApp-Chatbot.git
    cd WhatsApp-Chatbot
    
  2. Create a virtual environment and activate it:

    python -m venv venv
    source venv/bin/activate  # On Windows, use `venv\Scripts\activate`
    
  3. Install the required packages:

    pip install -r requirements.txt
    
  4. Copy the .env.example file to .env and fill in your configuration details:

    cp .env.example .env
    
  5. Edit the .env file with your specific configuration details:

    • MongoDB/Cosmos DB connection string
    • OpenAI API key
    • WhatsApp API credentials
    • Other configuration parameters

Running the Application

To run the application locally:

python src/main.py

The application will start and listen on the port specified in your .env file (default is 8080).

Deployment

This project is configured for deployment on Railway. To deploy:

  1. Push your code to a GitHub repository.
  2. Connect your Railway account to your GitHub repository.
  3. Railway will automatically deploy your application using the configuration in railway.json.

Testing

To run the tests:

python -m pytest tests/

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.