-
Notifications
You must be signed in to change notification settings - Fork 13
1469 lines (1392 loc) · 87.2 KB
/
main.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Flow-IPC
# Copyright 2023 Akamai Technologies, Inc.
#
# Licensed under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in
# compliance with the License. You may obtain a copy
# of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in
# writing, software distributed under the License is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing
# permissions and limitations under the License.
name: Flow-IPC pipeline
# Discussion on the philosophy behind the workflow (pipeline) below. The steps themselves should be easy enough to
# follow, but what's the bigger picture? Answer: The pipeline below is an algorithm, as coded below, invoked
# by GitHub on many runners (machines); and the inputs to this algorithm are:
# - a branch (`main`, or a feature/PR branch) or tag (usually release tag v<version>);
# - hence the current contents of that branch/tag;
# - some trigger event that causes the workflow (pipeline) to run in the first place:
# push to the branch/tag; pull request (PR) creation; or manual click by human (as of this writing usually
# for testing or debugging only).
# So given those inputs, what are the outputs or side effects? To answer, consider what jobs are actually run
# (as parallel as possible). There's `setup` and `set-vars` as of this writing, but these are
# purely tactical prerequisites and not worth discussing here; once they complete then the "real" jobs will run:
# build-and-test and doc-and-release. Here are their goals, meaning outputs/side effects given the above
# inputs:
# - build-and-test:
# - Summary: Test building and running the product; and bullet-proof it further via run-time sanitizers.
# - Build the code, including demo/test code, at the given branch/tag in wide variety of compiler/build-type
# combinations. The ability to build (including linking into test binaries) successfully is, of course,
# a test in and of itself.
# - Test that code by running the available unit test and integration test/demo binaries built in previous bullet.
# If something fails, help (within reason) make it clear what failed and why.
# - Output: Make any logs available, whether on success or failure. If console output is sufficient,
# great: it'll be visible via GitHub Actions UI. If not, save the non-console log output in a log tarball
# available as workflow artifact for download via GitHub Actions UI.
# - All of the above but with certain run-time sanitizers (as of this writing ASAN/LSAN, UBSAN, TSAN,
# and possibly clang-MSAN) enabled at build time as well. (RelWithDebInfo is a sufficient base build type
# for a sanitizer-enabled build; a subset of compilers -- as opposed to all of them -- is also sufficient
# for pragamtic reasons.)
# - doc-and-release:
# - Summary: 1, generate documentation from the source code (using Doxygen et al) and make it conveniently
# available. 2, update GitHub Release and GitHub Pages web site automatically with any relevant info, namely
# with the generated docs and source code tarball/zip.
# - Generate the documentation using Doxygen et al. The goal here is the *canonical generated documentation*, not
# *testing the ability to generate it*. It's a subtle difference, but it's important to note it, because
# if we wanted to test the ins and outs of doc generation in various environments then we could have a much more
# complex and longer pipeline -- and perhaps we should... but that's not the goal *here*.
# - Output: Make it available as workflow artfiact for download via GitHub Actions UI.
# Hence human can simply download it, whether it's for the `main` tip or a specific release version.
# - Side effect: (On pushes/merges to `main` branch *only*) Check-in the *generated docs* back into `main`
# itself, so that (1) they're available for local perusal by any person cloning/pulling `main` and (2) ditto
# for any downstream releases (which are mere tags of `main`).
# - Side effect: Having done so, signal GitHub Pages web site for the org, so that the new `main` docs
# are reflected at this web site. (It'll automatically clone `main`, copy the generated docs to web site
# replacing the existing `main` docs if any, and stage this to the web.)
# - (If the branch/tag input is, in fact, tag v* -- a release tag) The mere fact that a push to a release tag X
# is being observed means we want:
# - Side effect: Ensure that the GitHub Release X has the full source code available for human download
# as a package (tarball/zip). I.e., upload it there as needed.
# - Side effect: Ensure that the GitHub Pages web site actually lists this Release and its associated
# generated documentation. I.e., signal Pages that there's a Release X now: it'll then do the right
# thing (namely checkout the docs at the tag and copy them over; and add a link to the release and docs
# in the appropriate web page).
#
# So, roughly speaking,
# - build-and-test is about building and testing the product, including bullet-proofing it with sanitizers.
# - doc-and-release is about official documentation-based-on-source being available in various customary ways;
# with a side of official releases being accessible and comprehensively presented in customary ways.
# - TODO: It *could* be argued that those 2 goals are related but separate, and perhaps they should be 2 separate
# jobs. However, at least as of this writing, there's definite overlap between them, and combining the 2
# makes pragamtic sense. It's worth revisiting periodically perhaps.
on:
# Want to merge to development tip? Should probably pass these builds/tests and doc generation first (the latter
# in case the source change adds a Doxygen error or bad-looking docs). Note this runs on PR creation *and* update.
pull_request:
branches:
- main
push:
# Was able to merge PR to `main` tip? Should ensure these builds/tests/doc generation still pass after the fact
# (post-merge `main` does not always equal the PR-branch state); plus:
# auto-check-in generated docs into `main` branch tip (and signal web site to update accordingly).
branches:
- main
# Created release tag? Just in case, should ensure these builds/tests pass (just in case, but it's redundant
# against the branch=main trigger above); generate docs and make them available as artifact (nice: docs for
# a particular product version available online); plus:
# signal web site to update accordingly (there's probably a new release to present, with full source code attached;
# and there are docs for it; nice: docs for a particular product version available online).
tags:
- v*
# To create the button that runs a workflow manually: testing, debugging, demoing.
workflow_dispatch:
jobs:
# Impetus behind this is to set up at least one magic string used in 2+ places.
# Unfortunately simply using `env:` does not work, as jobs.<id>.if refuses to access the workflow-global `env.<id>`.
# Ridiculous. TODO: Revisit.
#
# Folding this into `setup` would have been fine, but as of this writing `setup` needs at least one constant
# from here, and getting the order of operations correct within that one job is non-trivial at best.
set-vars:
runs-on: ubuntu-latest
steps:
- name: Set variables/constants for subsequent use
run: |
# Set variables/constants for subsequent use.
outputs:
doc-commit-message: (Commit by workflow script) Update generated documentation.
# Impetus behind this is to gate whether the real jobs below actually need to run. Can of course also compute
# other things as needed.
setup:
needs: set-vars
runs-on: ubuntu-latest
steps:
- name: Checkout VERSION file and tag history
uses: actions/checkout@v4
with:
sparse-checkout: VERSION
fetch-depth: 0 # Get all history regarding tags. We'll need that for VERSION checking below.
- name: Grab repository version from `VERSION` file
id: repo_version
run: |
# Grab repository version from `VERSION` file.
if [ ! -e VERSION ]; then
echo '::error ::No VERSION file in repository root. One must exist.'
exit 1
fi
VERSION=`cat VERSION`
echo "Determined version: [$VERSION]."
echo "version=$VERSION" >> $GITHUB_OUTPUT
- name: (On release creation only) Check repository version against release tag name
if: success() && (!cancelled()) && startsWith(github.ref, 'refs/tags/v')
run: |
# Check repository version against release tag name.
VERSION=${{ steps.repo_version.outputs.version }}
TAG_VERSION=${GITHUB_REF#refs/tags/v}
if [ "$VERSION" = "$TAG_VERSION" ]; then
echo ":notice ::Tag name and repo version are an exact match. Looks good."
elif [[ "$TAG_VERSION" == "$VERSION-"* ]]; then
echo "::notice ::Tag name [v$TAG_VERSION] starts with repo version (pre-release). Allowed."
else
echo "::error ::VERSION file version v[$VERSION] must = release tag name [v$TAG_VERSION]."
echo "::error ::Suggest deleting release and tag, fixing VERSION if needed, and re-creating release/tag."
exit 1
fi
# TODO: Would be nice to also grab release name and ensure it equals tag name v<...>.
# Could be a separate step or just execute here if the above succeeded so far. Requires API fetch, so it's
# a few lines.
- name: (Except on release creation) Check repository version against already-existing release tag names
if: success() && (!cancelled()) && (!startsWith(github.ref, 'refs/tags/v'))
run: |
# Check repo version against release tag name.
# Do not fail on account of VERSION in this path however... just warn or gently inform.
VERSION=${{ steps.repo_version.outputs.version }}
if git rev-parse "v$VERSION" >/dev/null 2>&1; then
echo "::warning ::Tag [v$VERSION] already exists. The repo/VERSION file will require "\
"a bump, before the next release. However this should be done *just* ahead of release creation and must "\
"follow semantic versioning conventions, especially regarding when to bump major/minor/patch components. "\
"When ready to do this consult [https://semver.org/] as needed."
elif git tag | grep -q "^v$VERSION-"; then
echo "::notice ::Since pre-release tag(s) [v$VERSION-*] already exist(s), but no tag "\
"[v$VERSION] exists, this repo state is likely intended for a later pre-release or official release. "\
"Cool! However, reminder: "\
"The repo/VERSION version should be decided/finalized *just* ahead of release creation and must "\
"follow semantic versioning conventions, especially regarding when to bump major/minor/patch components. "\
"When ready to do this consult [https://semver.org/] as needed."
else
echo "::notice ::Since no tag [v$VERSION] or [v$VERSION-*] exists, this repo state "\
"is likely intended for a future release. Cool! However, reminder: "\
"The repo/VERSION version should be decided/finalized *just* ahead of release creation and must "\
"follow semantic versioning conventions, especially regarding when to bump major/minor/patch components. "\
"When ready to do this consult [https://semver.org/] as needed."
fi
- id: compute_proceed_else_not
name: Compute whether for main jobs to proceed or not
# For checking whether github.event.head_commit.message starts with needs.set-vars.outputs.doc-commit-message
# it is tempting to just use:
# '${{ github.event.head_commit.message }}' != '${{ needs.set-vars.outputs.doc-commit-message }}'*
# This works usually but is unsafe: If the head commit message contains, for example, a single-quote,
# then the shell syntax breaks down. One approach would be to use pipeline startsWith() before `run`,
# but apparently it cannot be done directly inside `run`; so it is a pain. Staying with shell scripting
# then we can just use here-doc syntax and a temp file, so if the commit message does not have the
# here-doc terminator token, then we're fine.
run: |
# Compute whether for main jobs to proceed or not.
TMP_MSG=/tmp/flow-ipc-pipeline-head-cmt-msg.txt
cat <<'FLOW_IPC_PIPELINE_HEAD_CMD_MSG_EOF' > $TMP_MSG
${{ github.event.head_commit.message }}
FLOW_IPC_PIPELINE_HEAD_CMD_MSG_EOF
if [ '${{ github.ref }}' != 'refs/heads/main' ] || \
[ '${{ github.event_name }}' != 'push' ] || \
! { head --lines=1 $TMP_MSG | fgrep -xq '${{ needs.set-vars.outputs.doc-commit-message }}'; }; then
echo 'proceed-else-not=true' >> $GITHUB_OUTPUT
else
echo 'proceed-else-not=false' >> $GITHUB_OUTPUT
echo 'The real jobs will not run: earlier `doc-and-release` job checked-in generated docs to `main`.'
echo 'That is not a source change and requires no actual pipeline to execute.'
fi
outputs:
proceed-else-not: ${{ steps.compute_proceed_else_not.outputs.proceed-else-not }}
build-and-test:
needs: [setup, set-vars]
if: |
needs.setup.outputs.proceed-else-not == 'true'
strategy:
fail-fast: false
matrix:
compiler:
- id: gcc-9
name: gcc
version: 9
c-path: /usr/bin/gcc-9
cpp-path: /usr/bin/g++-9
- id: gcc-10
name: gcc
version: 10
c-path: /usr/bin/gcc-10
cpp-path: /usr/bin/g++-10
- id: gcc-11
name: gcc
version: 11
c-path: /usr/bin/gcc-11
cpp-path: /usr/bin/g++-11
- id: gcc-13
name: gcc
version: 13
c-path: /usr/bin/gcc-13
cpp-path: /usr/bin/g++-13
install: True
- id: clang-13
name: clang
version: 13
c-path: /usr/bin/clang-13
cpp-path: /usr/bin/clang++-13
- id: clang-15
name: clang
version: 15
c-path: /usr/bin/clang-15
cpp-path: /usr/bin/clang++-15
- id: clang-16
name: clang
version: 16
c-path: /usr/bin/clang-16
cpp-path: /usr/bin/clang++-16
install: True
- id: clang-17
name: clang
version: 17
c-path: /usr/bin/clang-17
cpp-path: /usr/bin/clang++-17
install: True
build-test-cfg:
- id: debug
conan-profile-build-type: Debug
conan-profile-jemalloc-build-type: Debug
# In any case Debug, at the CMake script (in meta-project ./, and in flow/, ipc_*/) level,
# means LTO will be ignored (only *Rel* build-types enable LTO, if so instructed).
# Still keeping this here to make that clear to the reader/maintainer. Could remove it though.
no-lto: True
- id: release
conan-profile-build-type: Release
conan-profile-jemalloc-build-type: Release
# Leaving no-lto at default (false); full-on-optimized-no-debug is the quentessential LTO use case.
- id: relwithdebinfo
conan-profile-build-type: RelWithDebInfo
conan-profile-jemalloc-build-type: Release
# As of this writing RelWithDebInfo (in CMake, and Conan in our case at least doesn't override it)
# defaults to -O2 (not -O3), which isn't a super-effective way of deploying LTO. Plus
# we can use a test of non-LTO building.
# TODO: Perhaps this should be a separate matrix dimension (LTO on, LTO off). Number of configs will
# jump up, but it is more methodical and nice.
no-lto: True
- id: minsizerel
conan-profile-build-type: MinSizeRel
conan-profile-jemalloc-build-type: Release
# Leaving no-lto at default (false); -Os (size-optimizing) with LTO on is pretty realistic.
- id: relwithdebinfo-asan
conan-profile-build-type: RelWithDebInfo
conan-profile-jemalloc-build-type: Release
conan-profile-custom-conf: |
# no-omit-frame-pointer recommended in (A|UB|M)SAN docs for nice stack traces.
tools.build:cflags = ["-fsanitize=address", "-fno-omit-frame-pointer"]
tools.build:cxxflags = ["-fsanitize=address", "-fno-omit-frame-pointer"]
tools.build:sharedlinkflags = ["-fsanitize=address"]
tools.build:exelinkflags = ["-fsanitize=address"]
# jemalloc recipe needs this as of this writing (even though it dupes the stuff just-above conceptually).
conan-profile-custom-buildenv: |
CXXFLAGS = -fsanitize=address -fno-omit-frame-pointer
CFLAGS = -fsanitize=address -fno-omit-frame-pointer
LDFLAGS = -fsanitize=address
conan-profile-custom-settings: |
compiler.sanitizer = address
conan-custom-settings-defs: | # Could we not copy/paste these 4x?
data['compiler']['gcc']['sanitizer'] = ['None', 'address', 'thread', 'memory', 'undefined']
data['compiler']['clang']['sanitizer'] = ['None', 'address', 'thread', 'memory', 'undefined']
sanitizer-name: asan # Used as internal enum of sorts + name of sanitizer-related dirs.
# At least ASAN with clang + LTO => cryptic link error.
# Regardless regular RelWithDebInfo already has no-lto=true; so we would follow suit. Just be aware
# that changing it to false for whatever reason => ASAN probably breaks.
no-lto: True
- id: relwithdebinfo-ubsan
conan-profile-build-type: RelWithDebInfo
conan-profile-jemalloc-build-type: Release
conan-profile-custom-conf: |
tools.build:cflags = ["-fsanitize=undefined", "-fno-omit-frame-pointer"]
tools.build:cxxflags = ["-fsanitize=undefined", "-fno-omit-frame-pointer"]
tools.build:sharedlinkflags = ["-fsanitize=undefined"]
tools.build:exelinkflags = ["-fsanitize=undefined"]
conan-profile-custom-buildenv: |
CXXFLAGS = -fsanitize=undefined -fno-omit-frame-pointer
CFLAGS = -fsanitize=undefined -fno-omit-frame-pointer
LDFLAGS = -fsanitize=undefined
conan-profile-custom-settings: |
compiler.sanitizer = undefined
conan-custom-settings-defs: |
data['compiler']['gcc']['sanitizer'] = ['None', 'address', 'thread', 'memory', 'undefined']
data['compiler']['clang']['sanitizer'] = ['None', 'address', 'thread', 'memory', 'undefined']
sanitizer-name: ubsan
# While UBSAN might work with LTO, I do not want the aggravation/entropy. Turn it off.
# Plus inheriting from regular RelWithDebInfo anyway.
no-lto: True
- id: relwithdebinfo-tsan
conan-profile-build-type: RelWithDebInfo
conan-profile-jemalloc-build-type: Release
conan-profile-custom-conf: |
# no-omit-frame-pointer recommended in (A|UB|M)SAN docs for nice stack traces; TSAN docs do not
# mention it. Given the various symbolizer problems mentioned elsewhere in comments in this file,
# it seemed prudent to keep this consistent with those other *SAN.
tools.build:cflags = ["-fsanitize=thread", "-fno-omit-frame-pointer"]
tools.build:cxxflags = ["-fsanitize=thread", "-fno-omit-frame-pointer"]
tools.build:sharedlinkflags = ["-fsanitize=thread", "-fno-omit-frame-pointer"]
tools.build:exelinkflags = ["-fsanitize=thread", "-fno-omit-frame-pointer"]
conan-profile-custom-buildenv: |
CXXFLAGS = -fsanitize=thread -fno-omit-frame-pointer
CFLAGS = -fsanitize=thread -fno-omit-frame-pointer
LDFLAGS = -fsanitize=thread -fno-omit-frame-pointer
conan-profile-custom-settings: |
compiler.sanitizer = thread
conan-custom-settings-defs: |
data['compiler']['gcc']['sanitizer'] = ['None', 'address', 'thread', 'memory', 'undefined']
data['compiler']['clang']['sanitizer'] = ['None', 'address', 'thread', 'memory', 'undefined']
sanitizer-name: tsan
# While TSAN might work with LTO, I do not want the aggravation/entropy. Turn it off.
# Also, for some clangs, there are TSAN WARNINGs at times about too-small symbolizer buffer or something;
# throwing LTO into the mix seems like unnecessary entropy.
# Plus inheriting from regular RelWithDebInfo anyway.
no-lto: True
- id: relwithdebinfo-msan
conan-profile-build-type: RelWithDebInfo
conan-profile-jemalloc-build-type: Release
conan-profile-custom-conf: |
tools.build:cflags = ["-fsanitize=memory", "-fno-omit-frame-pointer", "-fsanitize-ignorelist=/tmp/msan_ignore_list.cfg"]
tools.build:cxxflags = ["-fsanitize=memory", "-fno-omit-frame-pointer", "-fsanitize-ignorelist=/tmp/msan_ignore_list.cfg"]
tools.build:sharedlinkflags = ["-fsanitize=memory"]
tools.build:exelinkflags = ["-fsanitize=memory"]
conan-profile-custom-buildenv: |
CXXFLAGS = -fsanitize=memory -fno-omit-frame-pointer -fsanitize-ignorelist=/tmp/msan_ignore_list.cfg
CFLAGS = -fsanitize=memory -fno-omit-frame-pointer -fsanitize-ignorelist=/tmp/msan_ignore_list.cfg
LDFLAGS = -fsanitize=memory
conan-profile-custom-settings: |
compiler.sanitizer = memory
conan-custom-settings-defs: |
data['compiler']['gcc']['sanitizer'] = ['None', 'address', 'thread', 'memory', 'undefined']
data['compiler']['clang']['sanitizer'] = ['None', 'address', 'thread', 'memory', 'undefined']
sanitizer-name: msan
# While MSAN might work with LTO, I do not want the aggravation/entropy. Turn it off.
# Plus inheriting from regular RelWithDebInfo anyway.
no-lto: True
# We concentrate on clang sanitizers; they are newer/nicer; also MSAN is clang-only. So gcc ones excluded.
# Attention! Excluding some sanitizer job(s) (with these reasons):
# - MSAN: MSAN protects against reads of ununitialized memory; it is clang-only (not gcc), unlike the other
# *SAN. Its mission overlaps at least partially with UBSAN's; for example for sure there were a couple of
# uninitialized reads in test code which UBSAN caught. Its current state -- if not excluded -- is as
# follows: 1, due to (as of this writing) building dependencies, including the capnp compiler binary used
# during our build process, with the same compiler build config as the real code, ignore-list entires had
# to be added to get past these problems. 2, before main() in *all* our demos/tests Boost was doing some
# global init which MSAN did not like and hence aborted before main(); these are now ignored as well.
# 3, this got us into main() at least, but immediately cryptic aborts started, seemingly again originating
# in Boost (but requires detailed investigation to really understand). At this point I (ygoldfel)
# disabled MSAN and filed a ticket. The overall status: MSAN is said to be useful, even with UBSAN active,
# but all resources including official docs indicate that it is a high-maintenance tool:
# *All* linked code, including libc and libstdc++/libc++ (the former in our case as of this writing),
# must be instrumented to avoid cryptic false positives. The good news is we do build other things
# instrumented (Boost libs, jemalloc, capnp/kj, gtest); but not libstdc++ (which official docs recommend);
# this can be done but requires more work (I would suggest switching to libc++ in that case from the
# start, as the clang people made it and themselves build it instrumented for their testing).
# So the bottom line: MSAN is a tough cookie and requires more work before enabling. In the meantime we
# have many layers of protection, including ASAN and UBSAN and lots of unit and integration tests.
# So this status quo is pretty good. TODO: Do the work/get MSAN functional/useful; un-exclude it then.
# - *SAN with gcc: We concentrate on clang sanitizers; they are newer/nicer; having to worry about differences
# between them is an excessive burden. So excluding gcc ASAN/UBSAN/TSAN.
# - TODO: Consider reducing to the newest or most stable clang. Generally they just keep improving; the
# chances of something being uncaught (incorrectly) with a later version are slim. Not impossible though.
# Look into it. Update: As of this writing transport_test exercise mode/SHM-jemalloc sub-mode is
# disabled for TSAN clang-17 due to instability of TSAN itself. So clearly when it comes to TSAN
# (which is officially in beta as of clang-17), higher version does not mean everything is better.
# Hence perhaps this to-do is more of a longer-term thing, when all the sanitizers stabilize, or when
# we find a single very-stable config. Just remember we aren't testing the sanitizer or our code's
# ability to be sanitized; we just want to detect any problems in the code -- however we get there.
# - *SAN with clang-13 (but not 15+): As of this writing clang-13 produces some additional warnings,
# at least in TSAN, which appear to be related to nearby non-race messages like
# `==75454==WARNING: Symbolizer buffer too small`. As a result, we either have to eliminate the
# latter problem (TODO: look into it) or suppress false-positive race warnings that might only look
# like added problems due to the incomplete stack traces. In general scanning through clang-13-produced
# TSAN output, there is a chaotic feel to it, when it comes to stack output. Meanwhile so far
# there has been zero evidence that a lower-version clang has actual added problems versus the other
# compiler-versions, due to generating code differently. Since we have at least 3 other compiler-versions
# running all the *SAN, I (ygoldfel) decided to exclude clang-13 *SAN, until the chaotic *SAN messages can
# be at least reduced. In the meantime our *SAN coverage is still quite good.
exclude:
- build-test-cfg: { id: relwithdebinfo-msan }
- compiler: { id: gcc-9 }
build-test-cfg: { id: relwithdebinfo-asan }
- compiler: { id: gcc-10 }
build-test-cfg: { id: relwithdebinfo-asan }
- compiler: { id: gcc-11 }
build-test-cfg: { id: relwithdebinfo-asan }
- compiler: { id: gcc-13 }
build-test-cfg: { id: relwithdebinfo-asan }
- compiler: { id: clang-13 }
build-test-cfg: { id: relwithdebinfo-asan }
- compiler: { id: gcc-9 }
build-test-cfg: { id: relwithdebinfo-ubsan }
- compiler: { id: gcc-10 }
build-test-cfg: { id: relwithdebinfo-ubsan }
- compiler: { id: gcc-11 }
build-test-cfg: { id: relwithdebinfo-ubsan }
- compiler: { id: gcc-13 }
build-test-cfg: { id: relwithdebinfo-ubsan }
- compiler: { id: clang-13 }
build-test-cfg: { id: relwithdebinfo-ubsan }
- compiler: { id: gcc-9 }
build-test-cfg: { id: relwithdebinfo-tsan }
- compiler: { id: gcc-10 }
build-test-cfg: { id: relwithdebinfo-tsan }
- compiler: { id: gcc-11 }
build-test-cfg: { id: relwithdebinfo-tsan }
- compiler: { id: gcc-13 }
build-test-cfg: { id: relwithdebinfo-tsan }
- compiler: { id: clang-13 }
build-test-cfg: { id: relwithdebinfo-tsan }
# Not using ubuntu-latest, so as to avoid surprises with OS upgrades and such.
runs-on: ubuntu-22.04
name: ${{ matrix.compiler.id }}-${{ matrix.build-test-cfg.id }}
env:
build-dir: ${{ github.workspace }}/build/${{ matrix.build-test-cfg.conan-profile-build-type }}
install-root-dir: ${{ github.workspace }}/install/${{ matrix.build-test-cfg.conan-profile-build-type }}
# (Unfortunately cannot refer to earlier-assigned `env.` entries within subsequent ones.)
install-dir: ${{ github.workspace }}/install/${{ matrix.build-test-cfg.conan-profile-build-type }}/usr/local
# Target file, as read by sanitized executable being invoked.
san-suppress-cfg-file: ${{ github.workspace }}/install/${{ matrix.build-test-cfg.conan-profile-build-type }}/usr/local/bin/san_suppressions.cfg
# Relative path (including file name) to suppressions file in a given context (which is given as dir name off
# which this path works). Possible contexts as of this writing: ${{ github.workspace }}/<module>/src
# (suppressions endemic to lib<module>); ${{ github.workspace }}/.../<test's source code dir>
# (suppressions endemic to that test specifically). This suppressions file holds the compiler-version-independent
# entries. (Malformed and ignored if matrix.build-test-cfg is not `*san`, meaning not sanitizer-enabled.)
san-suppress-cfg-in-file1: sanitize/${{ matrix.build-test-cfg.sanitizer-name }}/suppressions_${{ matrix.compiler.name }}.cfg
# Same but contains compiler version-specific entries (on top of those in san-suppress-cfg-file).
san-suppress-cfg-in-file2: sanitize/${{ matrix.build-test-cfg.sanitizer-name }}/suppressions_${{ matrix.compiler.name }}_${{ matrix.compiler.version }}.cfg
# Run-time controls for various sanitizers. Invoke before running test but *after* assembling suppressions
# file ${{ env.san-suppress-cfg-file}} if any (clear it if needed, as it might be left-over from a previous
# test). The proper technique is: 1, which of the suppression contexts (see above) are relevant?
# (Safest is to specify all contexts; as you'll see just below, it's fine if there are no files in a given
# context. However it would make code tedious to specify that way everywhere; so it's fine to skip contexts where
# we know that these days there are no suppresisons.) Let the contexts' dirs be $DIR_A, $DIR_B, .... Then:
# 2, `{ cat $DIR_A/${{ env.san-suppress-cfg-in-file1 }} $DIR_A/${{ env.san-suppress-cfg-in-file2 }} \
# $DIR_B/${{ env.san-suppress-cfg-in-file1 }} $DIR_B/${{ env.san-suppress-cfg-in-file2 }} \
# ... \
# > ${{ env.san-suppress-cfg-file }} 2> /dev/null; } || true`
# 3, {{ env.setup-tests-env }}.
#
# Notes about items in *SAN_OPTIONS:
#
# Unclear if we need disable_coredump=0; it might be a gcc thing due to historic
# issues with core size with ASAN; it is not documented in the clang *SAN docs for any
# sanitizers; but it is accepted for ASAN and TSAN, seemingly, and maybe is at worst
# harmless with out compiler versions. TODO: Maybe revisit.
#
# print_stacktrace=1 for UBSAN is recommended by documentation for nice stack traces
# (also that is why we apply sanitizers to RelWithDebInfo; DebInfo part for the nice
# stack traces/etc.; Rel part to reduce the considerable slowdown from some of the
# sanitizers).
#
# second_deadlock_stack=1 for TSAN: TODO: Explain. Don't see it in clang TSAN docs.
#
# Caution! Setting multiple *SAN_OPTIONS (while invoking only 1 sanitizer, as we do)
# seems like it would be harmless and avoid the `if/elif`s... but is actually a
# nightmare; there is some interaction in clang (at least 13-17) which causes the
# wrong sanitizer reading suppressions from another one => suppression parse error =>
# none of the demos/tests get anywhere at all. So set just the right one!
setup-tests-env: |
if [ '${{ matrix.build-test-cfg.sanitizer-name }}' = asan ]; then
export ASAN_OPTIONS='disable_coredump=0'
echo "ASAN_OPTIONS = [$ASAN_OPTIONS]."
elif [ '${{ matrix.build-test-cfg.sanitizer-name }}' = ubsan ]; then
export SAN_SUPP=1
export SAN_SUPP_CFG=${{ github.workspace }}/install/${{ matrix.build-test-cfg.conan-profile-build-type }}/usr/local/bin/san_suppressions.cfg
export UBSAN_OPTIONS="disable_coredump=0 print_stacktrace=1 suppressions=$SAN_SUPP_CFG"
echo "UBSAN_OPTIONS = [$UBSAN_OPTIONS]."
elif [ '${{ matrix.build-test-cfg.sanitizer-name }}' = tsan ]; then
export SAN_SUPP=1
export SAN_SUPP_CFG=${{ github.workspace }}/install/${{ matrix.build-test-cfg.conan-profile-build-type }}/usr/local/bin/san_suppressions.cfg
export TSAN_OPTIONS="disable_coredump=0 second_deadlock_stack=1 suppressions=$SAN_SUPP_CFG"
echo "TSAN_OPTIONS = [$TSAN_OPTIONS]."
fi
if [ "$SAN_SUPP" != '' ]; then
echo 'Sanitizer [${{ matrix.build-test-cfg.sanitizer-name }}] suppressions cfg contents:'
echo '[[[ file--'
cat $SAN_SUPP_CFG
echo '--file ]]]'
fi
# Must execute this ahead of any command that might at any point execute any binary built using the
# build-and-test build config. In addition, must then preface any such command with: $BUILT_CMD_PREFIX.
# Rationale: For most situations this is unnecessary, and the script will do nothing, while $BUILT_CMD_PREFIX
# will be empty as a result. It *is* necessary only when the "target" command would execute at least one
# program that was built with TSAN or ASAN sanitizer (TODO: MSAN too? unknown at the moment) flags.
# Unfortunately, in that case, ASLR (virtual address randomization) performed by at least Linux kernel
# can randomly tickle a bug/problem in clang sanitizers (apparently fixed in clang-18 in late 2023) which
# causes a message like `FATAL: ThreadSanitizer: unexpected memory mapping 0x767804872000-0x767804d00000`
# to be immediately printed, with program instantly exiting failingly. This would at least be obvious, if
# it's our actual code (a demo/test) failing: we can see it in the logs; but since we build deps (like jemalloc)
# with the same compile/link settings (e.g., -fsanitizer=thread), the problem can manifest as early as
# the *configure* step of something like jemalloc or m4; so configure will mysteriously fail with messages
# such as `checking size of void *... 0 / configure: error: Unsupported pointer size: 0`. Really, though,
# it is a `configure`-created test C program that errors-out as shown before (can be seen in config.log which
# has to be uploaded as an artifact to even see it... a pain). Anyway! The easiest work-around was
# suggested in https://stackoverflow.com/questions/5194666/disable-randomization-of-memory-addresses:
# disable ASLR by using `setarch` which then invokes whatever command you wanted in the first place.
# This should not affect our test coverage (in fact it perhaps make it more repeatable which is good);
# and the security aspects of ASLR are not a real factor in our context.
#
# TODO: Revisit, particularly when adding more `clang`s and/or other compilers with which TSAN and ASAN
# are enabled. Also see about MSAN (as of this writing it is disabled for orthogonal reasons, so it's moot).
setup-run-env: |
if [ '${{ matrix.build-test-cfg.sanitizer-name }}' = asan ]; then
export BUILT_CMD_PREFIX='setarch -R'
echo 'Shall use `setarch -R` to disable ASLR to avoid ASAN-built binary misbehavior.'
elif [ '${{ matrix.build-test-cfg.sanitizer-name }}' = tsan ]; then
export BUILT_CMD_PREFIX='setarch -R'
echo 'Shall use `setarch -R` to disable ASLR to avoid TSAN-built binary misbehavior.'
fi
# TODO: Ideally would go, like other things, under github.workspace somewhere (maybe build/),
# but that var isn't available in `strategy` up above, where we specify the compiler option
# pointing to this file. Surely we could cook something up; but meanwhile /tmp works fine.
msan-ignore-list-cfg-file: /tmp/msan_ignore_list.cfg
steps:
- name: Update available software list for apt-get
run: |
# Update available software list for apt-get.
lsb_release -a
sudo apt-get update
- name: Install clang compiler
if: |
matrix.compiler.install && (matrix.compiler.name == 'clang')
run: |
# Install clang compiler.
wget https://apt.llvm.org/llvm.sh
chmod u+x llvm.sh
sudo ./llvm.sh ${{ matrix.compiler.version }}
- name: Install gcc compiler
if: |
matrix.compiler.install && (matrix.compiler.name == 'gcc')
run: |
# Install gcc compiler.
sudo apt-get install -y software-properties-common
sudo add-apt-repository ppa:ubuntu-toolchain-r/test -y
sudo apt-get update
sudo apt-get install -y gcc-${{ matrix.compiler.version }} g++-${{ matrix.compiler.version }}
# We get highest 1.x, instead of 2+, because there are certain dependency recipe issues (namely for jemalloc)
# with 2+. TODO: 1, expound more clearly here or elsewhere what those issues are; 2, solve those issues and
# thus move to Conan 2+; Conan 1.x is officially on "deprecation path." This will also help resolve some other
# to-dos more easily (targeting different build settings at built product source versus tools used to build it
# = prime example).
- name: Install the latest version of Conan which is less than 2
run: pip install 'conan<2'
- name: Checkout `ipc` repository and submodules (`flow`, `ipc_*`)
uses: actions/checkout@v4
with:
submodules: true
- name: Add custom settings for Conan packages
if: |
matrix.build-test-cfg.conan-custom-settings-defs
run: |
# Add custom settings for Conan packages.
conan config init
pip install PyYAML
CONAN_SETTINGS_PATH=$(conan config home)/settings.yml
python -c "
import yaml
with open('$CONAN_SETTINGS_PATH', 'r') as file:
data = yaml.safe_load(file)
${{ matrix.build-test-cfg.conan-custom-settings-defs }}
with open('$CONAN_SETTINGS_PATH', 'w') as file:
yaml.dump(data, file)
"
# Important info/somewhat important TODO: The C[XX]FLAGS and linker-flags are supplied via
# ${{ matrix.build-test-cfg.conan-profile-custom-conf }} and
# ${{ matrix.build-test-cfg.conan-profile-custom-buildenv }}. These affect not just our objects/libs/executables;
# but also at least: 3rd party libs (jemalloc, capnp/kj, boost, gtest), 3rd party executables
# (capnp compiler binary; temp binaries created by auto-tools configure scripts to test features).
# In the case of the libs that's usually good; in particular things like
# -fsanitize=address (ASAN) (for build-type relwithdebinfo-asan) ideally are applied to all built code
# uniformly. (There are other libs being built, one can see: at least openssl and zlib; they're not really
# involved in our actual product, at least not in a core way, so for those it arguably matters less either way.)
# In the case of the binaries it is usually bad; we want the fastest, most normal tools possible, not ones
# built weirdly with whatever settings we're trying to test with our own software. For one it makes those
# tools slower -- perhaps not the hugest deal in practice here -- but it also generally increases entropy; and
# it has also resulted in various pain:
# - Cannot use -fno-sanitize-recover with UBSAN (abort program on warning) if we wanted to: it causes some
# hidden configure-script-generated binary abort => capnp binary build fails.
# - capnp binary fails MSAN at startup; hence capnp-compilation of our .capnp schemas fails.
# We have worked around all these, so the thing altogether works. It's just somewhat odd and entropy-ridden;
# and might cause maintanability problems over time, as it has already in the past.
# The TODO is to be more judicious about it
# and only apply these things to the libs/executables we want it applied. It is probably not so simple;
# but worst-case it should be possible to use something like build-type-cflags-override to target our code;
# and per-recipe (Boost, jemalloc, gtest...) techniques to target others; and not use the aggressive
# conan-profile-custom-conf and conan-profile-custom-buildenv. That said, there will be interesting subtleties
# like: libcapnp/kj are linked into capnp compiler binary; *and* to our code. So we should instrument it with
# sanitizer (when applicable); now some of the capnp-compiler-binary is instrumented; some isn't. Would that
# work, or would it be better to build capnp twice then (once for the binary, once for the linked libraries)?
- name: Create Conan profile
run: |
# Create Conan profile.
cat <<'EOF' > conan_profile
[settings]
compiler = ${{ matrix.compiler.name }}
compiler.version = ${{ matrix.compiler.version }}
compiler.cppstd = 17
# TODO: Consider testing with LLVM-libc++ also (with clang anyway).
compiler.libcxx = libstdc++11
arch = x86_64
os = Linux
jemalloc:build_type = ${{ matrix.build-test-cfg.conan-profile-jemalloc-build-type }}
build_type = ${{ matrix.build-test-cfg.conan-profile-build-type }}
${{ matrix.build-test-cfg.conan-profile-custom-settings }}
[conf]
tools.env.virtualenv:auto_use = True
tools.build:compiler_executables = {"c": "${{ matrix.compiler.c-path }}", "cpp": "${{ matrix.compiler.cpp-path }}"}
${{ matrix.build-test-cfg.conan-profile-custom-conf }}
[buildenv]
CC = ${{ matrix.compiler.c-path }}
CXX = ${{ matrix.compiler.cpp-path }}
${{ matrix.build-test-cfg.conan-profile-custom-buildenv }}
[options]
flow:doc = False
flow:build = True
ipc:doc = False
ipc:build = True
EOF
# (Oddly enough `no-lto: True` and `...: False` do still evaluate as `true` and `false` respectively.
# Hence why this compares against `false` and not `False`....)
if [ '${{ matrix.build-test-cfg.no-lto }}' != '' ] && [ '${{ matrix.build-test-cfg.no-lto }}' != 'false' ]; then
echo 'ipc:build_no_lto = True' >> conan_profile
fi
if [ '${{ matrix.build-test-cfg.build-type-cflags-override }}' != '' ]; then
echo 'ipc:build_type_cflags_override = ${{ matrix.build-test-cfg.build-type-cflags-override }}' >> conan_profile
fi
# We need to prepare a sanitizer ignore-list in MSAN mode. Background for this is subtle and annoying:
# As it stands, whatever matrix compiler/build-type is chosen applies not just to our code (correct)
# and 3rd party libraries we link like lib{boost_*|capnp|kj|jemalloc} (semi-optional but good) but also
# unfortunately any items built from source during "Install Flow-IPC dependencies" step that we then
# use during during the build step for our own code subsequently. At a minimum this will slow down
# such programs. (For the time being we accept this as not-so-bad; to target this config at some things
# but not others is hard/a ticket.) In particular, though, the capnp compiler binary is built this way;
# and our "Build targets" step uses it to build key things (namely convert .capnp schemas into .c++
# and .h sources which are then themselves compiled/used in compilation). In the case of MSAN, this
# version of capnp compiler happens to trigger several MSAN failures (presumably they are not a true
# problem, and it's not our job really to sanitize capnp -- though we can file tickets for them and/or
# issue PRs; but I digress). So in MSAN mode our build step fails, when capnp compiler itself aborts
# with MSAN failures. One approach is to not apply MSAN to capnp compiler (no-go for now; it's a ticket
# as mentioned); another is to uses Conan to patch capnp package for them (not a bad idea; ticket filed);
# and lastly we can put the specific failures on the ignore-list for MSAN. For now we do that; while
# unpleasant it does get the job done. TODO: Revisit/resolve tickets/improve (see above).
- name: Prepare MSAN sanitizer compile-time config file(s)
if: |
(!cancelled()) && (matrix.build-test-cfg.sanitizer-name == 'msan')
run: |
# Prepare MSAN sanitizer compile-time config file(s).
cat <<'EOF' > $${ env.msan-ignore-list-cfg-file }}
[memory]
# Warning: In clang-18 there are breaking changes in how globs/regexes are interpreted. See docs.
# Currently assuming clang-17 or lower.
#
# capnp compiler MSAN failures suppressed:
src:*/kj/filesystem-disk-unix.*
src:*/bits/stl_tree.h
EOF
# Append to that the suppressed items from the source tree. These apply to the real code being
# built below, so just stylistically it is nicer to keep them there along with other
# sanitizers' suppressions. (Note, though, that MSAN does not have a run-time suppression
# system; only these ignore-lists. The others do also have ignore-lists though.
# The format is totally different between the 2 types of suppression.)
# Our MSAN support is budding compared to UBSAN/ASAN/TSAN; so just specify the one ingore-list file
# we have now. TODO: If/when MSAN support gets filled out like the others', then use a context system
# a-la env.setup-tests-env.
cat ${{ github.workspace }}/flow/src/sanitize/msan/ignore_list_${{ matrix.compiler.name }}.cfg \
>> $${ env.msan-ignore-list-cfg-file }}
echo 'The combined MSAN ignore-list config file follows:'
cat $${ env.msan-ignore-list-cfg-file }}
- name: Install Flow-IPC dependencies with Conan using the profile
run: |
# Install Flow-IPC dependencies with Conan using the profile.
${{ env.setup-run-env }}
FLOW_VERSION=`cat flow/VERSION`
conan editable add flow flow/$FLOW_VERSION
# At least `configure` mini-programs are built with our build-settings, so $BUILD_CMD_PREFIX is required.
$BUILT_CMD_PREFIX \
conan install . \
--profile:build conan_profile --profile:host conan_profile --build missing || FAILED=yep
# Dep build failure is easy to diagnose from stdout/err, unless it happens during a `configure`;
# then it'll often print something insane like "checking size of void *... 0" and suggest looking at
# config.log... which will usually reveal the true problem, like a seg-fault or TSAN-triggered problem
# running the configure-generated test program. So let's get all the `config.log`s we can find
# and put them where later the log artifact tarball will be sourced; recreate the same dir structure as
# in the Conan dep build area, but include only the `config.log` files. Note: This is probably only truly
# useful if indeed the above command fails; but can't hurt to include it regardless.
SRC=/home/runner/.conan/data
DST=${{ env.install-dir }}/bin/logs/dep_build/conan-data
find $SRC -name config.log | while read -r config_log; do
# Remove the $SRC part of the path to get a relative path.
REL_PATH="${config_log#$SRC/}"
# Determine the directory path within $DST where the config.log should be copied.
DST_DIR="$DST/${REL_PATH%/*}"
mkdir -p "$DST_DIR"
cp -v "$config_log" "$DST_DIR"
done
[ "$FAILED" != yep ]
- name: Build libraries and demos/tests with Conan
run: |
# Build libraries and demos/tests with Conan.
${{ env.setup-run-env }}
# At least capnp compiler binary is built with our build-settings, so $BUILD_CMD_PREFIX is required.
$BUILT_CMD_PREFIX conan build .
- name: Install built targets with Makefile
run: |
make install \
--directory ${{ env.build-dir }} DESTDIR=${{ env.install-root-dir }}
# Save runner space: blow away build dir after install.
rm -rf ${{ env.build-dir }}
# From now on use !cancelled() to try to run any test/demo that exists regardless
# of preceding failures if any. Same-ish (always()) with the log-upload at the end.
# Worst-case they'll all fail in super-basic ways and immediately; no extra harm done.
# From now on save logs in install-dir/bin/logs. They will be tarred up and uploaded
# as artifacts at the end. For those tests below that produce separate logs as files
# to begin-with, this is a no-brainer. For those (as of this writing the main one
# is unit_test; but also the link tests produce short logs too) who use stdout/stderr
# the reason to do this is 2-fold.
# - UBSAN in particular produces non-fatal error output about problems it detects.
# We need to analyze them after the fact and fail a step below in that case to
# alert developers who would then fix such new problems.
# - One can also build UBSAN-mode things with -fno-sanitize-recover which would
# cause abnormal program exit on *first* error. We do not do this for these
# reasons:
# - It is more convenient to let it continue and thus show all problems in one
# shot.
# - There is a side problem: At this time compile settings, including
# in UBSAN case `-fsanitize=undefined -fno-sanitize-recover`, are applied not
# just to our code or 3rd party libraries but also any other stuff built
# (due to setting C[XX]FLAGS in Conan profile). Targeting just the exact
# stuff we want with those is hard and a separate project/ticket.
# In the meantime -fno-sanitize-recover causes completely unrealted program
# halts during the very-early step, when building dependencies including
# capnp; some autotools configure.sh fails crazily, and nothing can work
# from that point on due to dependencies-install step failing. So at this
# time -fno-sanitize-recover is a no-go; it affects too much unrelated stuff.
# - It is more consistent/convenient to get all the bulky logs in one place as an
# artifact, rather than some in the pipeline output, others in the artifacts.
# (This preference is subjective, yes.)
# Here, as in all other tests below, we assemble a suppressions file in case this is a sanitized
# run; and we follow the procedure explained near setup-tests-env definition. To reiterate: to avoid
# tedium, but at the cost of mantainability of this file (meaning if a suppressions context is added then
# a few lines would need to be added here), we only list those contexts where *any* sanitizer has
# *any* suppression; otherwise we skip it for brevity. `find . -name 'suppressions*.cfg` is pretty useful
# to determine their presence in addition to whether the test itself has its specific suppressions of any kind.
- name: Run link test [`ipc_core` - Flow-IPC Core]
if: |
!cancelled()
run: |
# Run link test [`ipc_core` - Flow-IPC Core].
cd ${{ env.install-dir }}/bin
OUT_DIR=logs/ipc_core_link_test
mkdir -p $OUT_DIR
SUPP_DIR_A=${{ github.workspace }}/flow/src
{ cat $SUPP_DIR_A/${{ env.san-suppress-cfg-in-file1 }} $SUPP_DIR_A/${{ env.san-suppress-cfg-in-file2 }} \
> ${{ env.san-suppress-cfg-file }} 2> /dev/null; } || true
${{ env.setup-tests-env }}
${{ env.setup-run-env }}
$BUILT_CMD_PREFIX \
./ipc_core_link_test.exec $OUT_DIR/log.log > $OUT_DIR/console.log 2>&1
- name: Run link test [`ipc_transport_structured` - Flow-IPC Structured Transport]
if: |
!cancelled()
run: |
# Run link test [`ipc_transport_structured` - Flow-IPC Structured Transport].
cd ${{ env.install-dir }}/bin
OUT_DIR=logs/ipc_transport_structured_link_test
mkdir -p $OUT_DIR
SUPP_DIR_A=${{ github.workspace }}/flow/src
{ cat $SUPP_DIR_A/${{ env.san-suppress-cfg-in-file1 }} $SUPP_DIR_A/${{ env.san-suppress-cfg-in-file2 }} \
> ${{ env.san-suppress-cfg-file }} 2> /dev/null; } || true
${{ env.setup-tests-env }}
${{ env.setup-run-env }}
$BUILT_CMD_PREFIX \
./ipc_transport_structured_link_test.exec $OUT_DIR/log.log > $OUT_DIR/console.log 2>&1
- name: Run link test [`ipc_session` - Flow-IPC Sessions]
if: |
!cancelled()
run: |
# Run link test [`ipc_session` - Flow-IPC Sessions].
cd ${{ env.install-dir }}/bin
OUT_DIR=logs/ipc_session_link_test
mkdir -p $OUT_DIR
SUPP_DIR_A=${{ github.workspace }}/flow/src
SUPP_DIR_B=${{ github.workspace }}/ipc_session/src
{ cat $SUPP_DIR_A/${{ env.san-suppress-cfg-in-file1 }} $SUPP_DIR_A/${{ env.san-suppress-cfg-in-file2 }} \
$SUPP_DIR_B/${{ env.san-suppress-cfg-in-file1 }} $SUPP_DIR_B/${{ env.san-suppress-cfg-in-file2 }} \
> ${{ env.san-suppress-cfg-file }} 2> /dev/null; } || true
${{ env.setup-tests-env }}
${{ env.setup-run-env }}
$BUILT_CMD_PREFIX \
./ipc_session_link_test_srv.exec $OUT_DIR/srv.log > $OUT_DIR/srv.console.log 2>&1 &
SRV_PID=$!
sleep 1
$BUILT_CMD_PREFIX \
./ipc_session_link_test_cli.exec $OUT_DIR/cli.log > $OUT_DIR/cli.console.log 2>&1
if wait $SRV_PID; then SRV_EC=0; else SRV_EC=$?; fi
[ $SRV_EC -eq 0 ]
- name: Run link test [`ipc_shm` - Flow-IPC Shared Memory]
if: |
!cancelled()
run: |
# Run link test [`ipc_shm` - Flow-IPC Shared Memory].
cd ${{ env.install-dir }}/bin
OUT_DIR=logs/ipc_shm_link_test
mkdir -p $OUT_DIR
SUPP_DIR_A=${{ github.workspace }}/flow/src
SUPP_DIR_B=${{ github.workspace }}/ipc_session/src
{ cat $SUPP_DIR_A/${{ env.san-suppress-cfg-in-file1 }} $SUPP_DIR_A/${{ env.san-suppress-cfg-in-file2 }} \
$SUPP_DIR_B/${{ env.san-suppress-cfg-in-file1 }} $SUPP_DIR_B/${{ env.san-suppress-cfg-in-file2 }} \
> ${{ env.san-suppress-cfg-file }} 2> /dev/null; } || true
${{ env.setup-tests-env }}
${{ env.setup-run-env }}
$BUILT_CMD_PREFIX \
./ipc_shm_link_test_srv.exec $OUT_DIR/srv.log > $OUT_DIR/srv.console.log 2>&1 &
SRV_PID=$!
sleep 1
$BUILT_CMD_PREFIX \
./ipc_shm_link_test_cli.exec $OUT_DIR/cli.log > $OUT_DIR/cli.console.log 2>&1
if wait $SRV_PID; then SRV_EC=0; else SRV_EC=$?; fi
[ $SRV_EC -eq 0 ]
- name: Run link test [`ipc_shm_arena_lend` - Flow-IPC SHM-jemalloc]
if: |
!cancelled()
run: |
# Run link test [`ipc_shm_arena_lend` - Flow-IPC SHM-jemalloc].
cd ${{ env.install-dir }}/bin
OUT_DIR=logs/ipc_shm_arena_lend_link_test
mkdir -p $OUT_DIR
SUPP_DIR_A=${{ github.workspace }}/flow/src
SUPP_DIR_B=${{ github.workspace }}/ipc_session/src
SUPP_DIR_C=${{ github.workspace }}/ipc_shm_arena_lend/src
{ cat $SUPP_DIR_A/${{ env.san-suppress-cfg-in-file1 }} $SUPP_DIR_A/${{ env.san-suppress-cfg-in-file2 }} \
$SUPP_DIR_B/${{ env.san-suppress-cfg-in-file1 }} $SUPP_DIR_B/${{ env.san-suppress-cfg-in-file2 }} \
$SUPP_DIR_C/${{ env.san-suppress-cfg-in-file1 }} $SUPP_DIR_C/${{ env.san-suppress-cfg-in-file2 }} \
> ${{ env.san-suppress-cfg-file }} 2> /dev/null; } || true
${{ env.setup-tests-env }}
${{ env.setup-run-env }}
$BUILT_CMD_PREFIX \
./ipc_shm_arena_lend_link_test_srv.exec $OUT_DIR/srv.log > $OUT_DIR/srv.console.log 2>&1 &
SRV_PID=$!
sleep 1
$BUILT_CMD_PREFIX \
./ipc_shm_arena_lend_link_test_cli.exec $OUT_DIR/cli.log > $OUT_DIR/cli.console.log 2>&1
if wait $SRV_PID; then SRV_EC=0; else SRV_EC=$?; fi
[ $SRV_EC -eq 0 ]
- name: Run unit tests
if: |
!cancelled()
run: |
# Run unit tests.
cd ${{ env.install-dir }}/bin
# Some newline issues with the possible additional args; so need to make a wrapper script
# and then redirect, as desired, its output.
cat <<'EOF' > ${{ env.install-dir }}/bin/run_unit_test.sh
$BUILT_CMD_PREFIX ./libipc_unit_test.exec "$@"
EOF
RUN_IT='/usr/bin/bash -e ${{ env.install-dir }}/bin/run_unit_test.sh'
OUT_DIR=logs/libipc_unit_test
mkdir -p $OUT_DIR
SUPP_DIR_A=${{ github.workspace }}/flow/src
SUPP_DIR_B=${{ github.workspace }}/ipc_session/src
SUPP_DIR_C=${{ github.workspace }}/ipc_shm_arena_lend/src
# As of this writing there are TSAN suppressions for this test specifically. TODO: Revisit them; and then this.
SUPP_DIR_OWN=${{ github.workspace }}/test/suite/unit_test
{ cat $SUPP_DIR_A/${{ env.san-suppress-cfg-in-file1 }} $SUPP_DIR_A/${{ env.san-suppress-cfg-in-file2 }} \
$SUPP_DIR_B/${{ env.san-suppress-cfg-in-file1 }} $SUPP_DIR_B/${{ env.san-suppress-cfg-in-file2 }} \
$SUPP_DIR_C/${{ env.san-suppress-cfg-in-file1 }} $SUPP_DIR_C/${{ env.san-suppress-cfg-in-file2 }} \
$SUPP_DIR_OWN/${{ env.san-suppress-cfg-in-file1 }} $SUPP_DIR_OWN/${{ env.san-suppress-cfg-in-file2 }} \
> ${{ env.san-suppress-cfg-file }} 2> /dev/null; } || true
${{ env.setup-tests-env }}
${{ env.setup-run-env }}
if [ '${{ matrix.build-test-cfg.sanitizer-name }}' != tsan ]; then
# This is what we want to do normally.
$RUN_IT > $OUT_DIR/console.log 2>&1
else # if sanitizer-name is tsan:
# With TSAN -- which is officially in beta as of even clang-18 (as of this writing we are on 17 at best) --
# our tests hit some kind of limitation (possibly bug). What happens is the console prints a-la
# ThreadSanitizer: CHECK failed: sanitizer_deadlock_detector.h:67
# "((n_all_locks_)) < (((sizeof(all_locks_with_contexts_)/sizeof((all_locks_with_contexts_)[0]))))"
# (0x40, 0x40) (tid=4111122)
# and the program hangs indefinitely. This seems to be saying the # of locks reached 64, so TSAN gave up.
# A ticket has been filed to look into this; but in the meantime we work around it. Namely, we have
# observed that:
# - A particular test, even if run by itself, always triggers it. So we are forced to skip that one.
# - In clang-17 yet another test results in a different problem:
# LLVM ERROR: Sections with relocations should have an address of 0
# ...
# That one is also observed for transport_test exercise mode SHM-jemalloc sub-mode, which as of this
# writing is skipped for that compiler+TSAN for that reason. We do something similar here in skipping
# that particular test too in that situation. TODO: It's a test that starts tons of threads.
# Consider other approaches; maybe reduce number of threads or...? Ticket filed in any case.
# As for the other tests -- the vast majority -- outside of those 1-2:
# - A particular small subset of tests, if involved, triggers it. However if run separately from the
# the others -- even as a group -- then it is OK. So we run all but that group; then just that
# group.
LOCK_FATAL_TESTS=Jemalloc_shm_pool_collection_test.Multiprocess
if [ '${{ matrix.compiler.id }}' = 'clang-17' ]; then
LOCK_FATAL_TESTS=$LOCK_FATAL_TESTS:Jemalloc_shm_pool_collection_test.Multithread_load
fi
LOCK_HEAVY_TESTS='Shm_session_test.External_process_array:\
Shm_session_test.External_process_vector_offset_ptr:\
Shm_session_test.External_process_string_offset_ptr:\
Shm_session_test.External_process_list_offset_ptr:\
Shm_session_test.Multisession_external_process:\
Shm_session_test.Disconnected_external_process:\
Borrower_shm_pool_collection_test.Multiprocess:\
Shm_pool_collection_test.Multiprocess'
# Get rid of newlines/backslashes....
LOCK_HEAVY_TESTS="$(echo "$LOCK_HEAVY_TESTS" | tr -d '[:space:]\\')"
if $RUN_IT --gtest_filter=-$LOCK_HEAVY_TESTS:$LOCK_FATAL_TESTS > $OUT_DIR/console.minus-lock-heavy.log 2>&1; \
then EC_ALL=0; else EC_ALL=$?; fi
if $RUN_IT --gtest_filter=$LOCK_HEAVY_TESTS > $OUT_DIR/console.lock-heavy.log 2>&1; \
then EC_LH=0; else EC_LH=$?; fi
echo "Exit codes: all-minus-lock-heavy = $EC_ALL; lock-heavy = $EC_LH."
[ $EC_ALL -eq 0 ] && [ $EC_LH -eq 0 ]
fi
- name: Prepare run script for [perf_demo] variations below
if: |
!cancelled()
run: |
# Prepare run script for [perf_demo] variations below.
cat <<'EOF' > ${{ env.install-dir }}/bin/run_perf_demo.sh
# Script created by pipeline during job.
echo "Zero-copy backing type: [$1]."
cd ${{ env.install-dir }}/bin
OUT_DIR=logs/perf_demo/$1
mkdir -p $OUT_DIR