-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathour.py
183 lines (136 loc) · 5.19 KB
/
our.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import re
from itertools import chain
import string
import numpy as np
import pandas as pd
from gensim.models import Word2Vec
from keras import backend as K
from keras.layers import Dense, Input
from keras.layers import GRU, Bidirectional, TimeDistributed, CuDNNLSTM, LSTM, Dropout, CuDNNGRU
from keras.models import Model
from keras.optimizers import RMSprop
from nltk.corpus import stopwords
from nltk.tokenize import sent_tokenize, word_tokenize
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, LabelBinarizer
from attention_layer import AttentionWithContext
from utils import merge_title_and_message, remove_linux_garbage, remove_stopwords
from sklearn.metrics import f1_score
from ind_rnn import IndRNN
def read_linux(feature):
data = pd.read_csv('./linux_bugs_usage_ready.csv', sep='\t')
data = merge_title_and_message(data)
data = remove_linux_garbage(data)
return data['text'], data[feature]
def read_chrome():
data = pd.read_csv('./chromium.csv', sep='\t')
data = merge_title_and_message(data, message_col_name='description')
# data = remove_linux_garbage(data)
data['text'] = data['text'].map(lambda s: str(s).replace('\\r', '').replace('\\n', '. '))
return data['text'], data['type']
X, Y = read_linux('importance')
RNN = CuDNNGRU
enc = LabelEncoder()
yc = enc.fit_transform(Y)
oh = LabelBinarizer()
y_trans = oh.fit_transform(yc)
translator = str.maketrans('', '', string.punctuation)
stop_words = stopwords.words('english')
stop_words = set([w.translate(translator) for w in stop_words])
def clean_str(string):
"""
Tokenization/string cleaning for dataset
Every dataset is lower cased except
"""
string = re.sub(r"\\", "", string)
string = re.sub(r"\'", "", string)
string = re.sub(r"\"", "", string)
string = string.strip().lower().translate(translator)
return string
def remove_stopwords_from_sent(sent):
res = []
for word in sent:
if word not in stop_words:
res.append(word)
return res
def build_sentences(X):
X_sentences = []
for doc in X:
sentences = sent_tokenize(doc)
cleaned = map(clean_str, sentences)
tokenized = map(word_tokenize, cleaned)
cleaned = map(remove_stopwords_from_sent, tokenized)
X_sentences.append(list(cleaned))
return X_sentences
X_sentences = build_sentences(X)
list(map(print, X_sentences[2]))
# Word2vec parameters
min_word_frequency_word2vec = 3
embed_size_word2vec = 200
context_window_word2vec = 5
X_merged = list(map(lambda l: list(chain(*l)), X_sentences))
print(X_merged[13])
wordvec_model = Word2Vec(X_merged, min_count=min_word_frequency_word2vec,
size=embed_size_word2vec, window=context_window_word2vec)
max_doc_len = 5
max_sentence_len = 100
num = len(X_sentences)
vocabulary = wordvec_model.wv.vocab
print("Vocabulary", len(vocabulary))
def map_sentence(sent):
out = np.empty((max_sentence_len, embed_size_word2vec))
for ind, word in enumerate(sent):
if ind == max_sentence_len:
break
if word in vocabulary:
out[ind, :] = wordvec_model.wv[word]
return out
def map_doc(doc):
out = np.empty((max_doc_len, max_sentence_len, embed_size_word2vec))
for ind, sent in enumerate(doc):
if ind == max_doc_len:
break
out[ind, :] = map_sentence(sent)
return out
x = np.empty((num, max_doc_len, max_sentence_len, embed_size_word2vec))
for ind, doc in enumerate(X_sentences):
x[ind, :] = map_doc(doc)
def make_model(rnn_dim=64, dense_dim=50):
def attention_block():
def f(input):
rnn2 = Bidirectional(IndRNN(rnn_dim, return_sequences=True))(input)
drop2 = Dropout(0.75)(rnn2)
dense = TimeDistributed(Dense(dense_dim))(drop2)
drop3 = Dropout(0.5)(dense)
att = AttentionWithContext()(drop3)
return att
return f
with K.name_scope('sentence_enc'):
sentence_input = Input(shape=(max_sentence_len, embed_size_word2vec))
word_att = attention_block()(sentence_input)
sentEncoder = Model(sentence_input, word_att)
with K.name_scope('doc_enc'):
doc_input = Input(shape=(max_doc_len, max_sentence_len, embed_size_word2vec))
sent_enc = TimeDistributed(sentEncoder)(doc_input)
doc_att = attention_block()(sent_enc)
preds = Dense(y_trans.shape[-1], activation='softmax')(doc_att)
model = Model(doc_input, preds)
return model
model = make_model(rnn_dim=64, dense_dim=64)
model.summary()
x_train, x_test, y_train, y_test = train_test_split(x, y_trans, train_size=0.85)
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['acc'])
model.fit(x_train, y_train, validation_data=(x_test, y_test),
nb_epoch=13, batch_size=16)
from sklearn.metrics import accuracy_score, f1_score
def report(x, y):
labels = np.argmax(y, axis=-1)
predicted = np.argmax(model.predict(x), axis=-1)
print("Acc", accuracy_score(labels, predicted))
print("F1", f1_score(labels, predicted, average='weighted'))
print("Training")
report(x_train, y_train)
print("Testing")
report(x_test, y_test)