-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathexemple_2.py
175 lines (136 loc) · 5.51 KB
/
exemple_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from fastapi import FastAPI, HTTPException
from fastapi.responses import HTMLResponse
from pydantic import BaseModel
from cryptography.fernet import Fernet
from sklearn.preprocessing import OneHotEncoder
from dotenv import load_dotenv
import numpy as np
import joblib
import hashlib
app = FastAPI()
# Define the User input model
class User(BaseModel):
first_name: str
last_name: str
email: str
age: int
sex: str
favorite_color: str
favorite_food: str
##########################################
# Load the trained model
model = joblib.load("model_fin2.pkl")
# Create a OneHotEncoder for the categorical features
encoder = OneHotEncoder(categories="auto")
# Define the allowed classes for favorite_color, favorite_food, and sex
allowed_favorite_colors = ['Red', 'Blue', 'Green', 'Yellow', 'Purple']
allowed_favorite_foods = ['Pizza', 'Pasta', 'Burger', 'Sushi', 'Salad', 'Ice Cream']
allowed_sex = ['Male', 'Female']
# Fit the OneHotEncoder with the allowed classes
encoder.fit([[color] for color in allowed_favorite_colors] +
[[food] for food in allowed_favorite_foods] +
[[sex] for sex in allowed_sex])
##########################################
# Define the encryption key
load_dotenv()
import os
encryption_key = os.getenv("ENCRYPTION_KEY")
cipher_suite = Fernet(encryption_key)
# Pseudonymization function
#def pseudonymize_data(encrypted_data):
# Apply hash function (SHA256) to the encrypted data
# hashed_data = hashlib.sha256(encrypted_data).hexdigest()
# return hashed_data
def pseudonymize_data(encrypted_data):
# Convert encrypted_data en une chaîne de caractères
encrypted_data_str = encrypted_data.decode()
# Apply hash function (SHA256) to the encrypted data
hashed_data = hashlib.sha256(encrypted_data_str.encode()).hexdigest()
return hashed_data
def decrypt(encrypted_value):
plain_text = cipher_suite.decrypt(encrypted_value)
return plain_text.decode()
###########################################
# In-memory storage for user data
users = []
# Endpoint for predicting astrological sign
@app.post("/predict/")
def predict_sign(user: User):
# Check if favorite_color, favorite_food, and sex are in the allowed classes
if user.favorite_color not in allowed_favorite_colors:
return {"error": "Invalid favorite color"}
if user.favorite_food not in allowed_favorite_foods:
return {"error": "Invalid favorite food"}
if user.sex not in allowed_sex:
return {"error": "Invalid sex"}
# Encrypt the user data
encrypted_first_name = cipher_suite.encrypt(user.first_name.encode())
encrypted_last_name = cipher_suite.encrypt(user.last_name.encode())
encrypted_email = cipher_suite.encrypt(user.email.encode())
# Preprocess the data
categorical_features = [user.sex, user.favorite_color, user.favorite_food]
encoded_features = encoder.transform([[category] for category in categorical_features]).toarray()[0]
# Combine all features
features = np.concatenate(([user.age], encoded_features))
# Reshape the features to match the model's input shape
features = features.reshape(1, -1)
# Make the prediction
prediction = model.predict(features)[0]
# Store the encrypted user data
users.append({
"encrypted_first_name": encrypted_first_name,
"encrypted_last_name": encrypted_last_name,
"encrypted_email": encrypted_email
})
return {
"astrological_sign": prediction,
"encrypted_first_name": encrypted_first_name,
"encrypted_last_name": encrypted_last_name,
"encrypted_email": encrypted_email
}
#####
@app.get("/pseudonymize/")
def pseudonymize_user_data():
pseudonymized_users = []
# Pseudonymize the encrypted user data
for user in users:
pseudonymized_user = {
"pseudonymized_first_name": pseudonymize_data(user["encrypted_first_name"]),
"pseudonymized_last_name": pseudonymize_data(user["encrypted_last_name"]),
"pseudonymized_email": pseudonymize_data(user["encrypted_email"]),
}
pseudonymized_users.append(pseudonymized_user)
return pseudonymized_users
##########################""
@app.get("/decrypt/{user_id}")
def decrypt_data(user_id: int):
if user_id < 0 or user_id >= len(users):
return {"error": "User not found"}
user = users[user_id]
decrypted_first_name = cipher_suite.decrypt(user["encrypted_first_name"]).decode()
decrypted_last_name = cipher_suite.decrypt(user["encrypted_last_name"]).decode()
decrypted_email = cipher_suite.decrypt(user["encrypted_email"]).decode()
return {
"user_id": user_id,
"decrypted_first_name": decrypted_first_name,
"decrypted_last_name": decrypted_last_name,
"decrypted_email": decrypted_email
}
####################################
# Root endpoint
@app.get("/", response_class=HTMLResponse)
def root():
return """
<html>
<body>
<script>
function showPopup() {
alert("Thank you for using our service! By clicking the button below, you give your consent for us to use your data for predicting your astrological sign.");
}
</script>
<h1>Welcome to the Astrological Sign Prediction API!</h1>
<button onclick="showPopup()">Click Me!</button>
</body>
</html>
"""
####################################