diff --git a/Pyrimidine(article).md b/Pyrimidine(article).md index 0eaff9b..173ea83 100644 --- a/Pyrimidine(article).md +++ b/Pyrimidine(article).md @@ -102,7 +102,7 @@ class MyPopulation(SGAPopulation): default_size = 20 pop = MyPopulation.random(size=n) # Size: length of the chromosome -pop.evolve(n_iter=100) +pop.evolve(max_iter=100) ``` Finally, the optimal individual can be found using `pop.best_individual` as the solution. Setting `verbose=True` prints the iteration process. The equivalent expression is as follows: @@ -121,7 +121,7 @@ To assess the algorithm's performance, it is common to plot fitness curves or ot ```python stat = {'Mean Fitness': 'mean_fitness', 'Best Fitness': 'best_fitness'} -data = pop.history(stat=stat, n_iter=100) +data = pop.history(stat=stat, max_iter=100) import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) diff --git a/docs/build/html/Customization.html b/docs/build/html/Customization.html index b59aef0..6bfa27c 100644 --- a/docs/build/html/Customization.html +++ b/docs/build/html/Customization.html @@ -228,7 +228,7 @@
Equivalently
@@ -499,7 +499,7 @@Plot the fitness curves as usual.
@@ -562,7 +562,7 @@Equivalently
@@ -507,7 +507,7 @@Plot the fitness curves as usual.
@@ -570,7 +570,7 @@