Skip to content

Latest commit

 

History

History
300 lines (264 loc) · 8.09 KB

File metadata and controls

300 lines (264 loc) · 8.09 KB

3

3.2

根据一次观测,用极大极小化检验来对下面两个假设做出判断。 $$ \begin{aligned} H_1: & z(t) = n(t)\ H_0: & z(t) = 1 + n(t) \end{aligned} $$ 假定 $n(t)$ 为具有零均值和功率 $\sigma^2$ 的高斯过程,以及 $C_{00} = C_{11} = 0, C_{10} = C_{01} = 1$ 根据观测结果定出的门限是什么? 每一个假设的先验概率是多少? $$ \begin{dcases} p(z|H_1) & = \frac{1}{\sqrt{2\pi}\sigma}\exp\frac{-z^2}{2\sigma^2}\ p(z|H_0) & = \frac{1}{\sqrt{2\pi}\sigma}\exp\frac{-(z - 1)^2}{2\sigma^2} \end{dcases} $$ $$ \begin{aligned} \lambda(z) = \frac{p(z|H_0)}{p(z|H_1)} = \exp\frac{2z - 1}{2\sigma^2} & \mathop{\gtrless}\limits_{H_1}^{H_0} \lambda_0\ z & \mathop{\gtrless}\limits_{H_1}^{H_0} \sigma^2\ln\lambda_0 + \frac{1}{2} = \lambda'0 \end{aligned} $$ $$ \begin{dcases} P\mathrm{F} = \int\nolimits_{\lambda'0}^\infty p(l|H_1)dl = \int\nolimits{\lambda'0}^\infty \frac{1}{\sqrt{2\pi}\sigma}\exp\frac{-l^2}{2\sigma^2}dl\ P\mathrm{M} = \int\nolimits_{-\infty}^{\lambda'0} p(l|H_0)dl = \int\nolimits{\lambda'0}^\infty \frac{1}{\sqrt{2\pi}\sigma}\exp\frac{-(l - 1)^2}{2\sigma^2}dl \end{dcases} $$ $$ \begin{aligned} P\mathrm{M} & = P_\mathrm{F}\ 1 - \mathrm{erfc}\frac{\lambda'0 - 1}{\sigma} & = \mathrm{erfc}\frac{\lambda'0}{\sigma}\ \lambda'0 & = \frac{1}{2} \end{aligned} $$ $$ \begin{aligned} \lambda_0 = \frac{p(z\mathrm{T}^*|H_0)}{p(z\mathrm{T}^|H_1)} = \frac{P^(H_1)}{P^*(H_0)}\frac{C{01} - C_{11}}{C_{10} - C_{00}} = 1 \end{aligned} $$ $$ 又 P^(H_1) + P^(H_0) = 1 \Rightarrow P^(H_1) = P^(H_0) = \frac{1}{2} $$

3.3

若上题假定 $C_{10} = 3, C_{01} = 6$

1

每个假设的先验概率为何值时达到最大的可能代价;

2

根据一次观测的判决区域如何? $$ \begin{dcases} P_\mathrm{F} = \int\nolimits_{\lambda'0}^\infty p(l|H_1)dl = \int\nolimits{\lambda'0}^\infty \frac{1}{\sqrt{2\pi}\sigma}\exp\frac{-l^2}{2\sigma^2}dl\ P\mathrm{M} = \int\nolimits_{-\infty}^{\lambda'0} p(l|H_0)dl = \int\nolimits{\lambda'0}^\infty \frac{1}{\sqrt{2\pi}\sigma}\exp\frac{-(l - 1)^2}{2\sigma^2}dl \end{dcases} $$ $$ \begin{aligned} P\mathrm{M} & = P_\mathrm{F}\ \lambda_0' & = \exp\frac{\lambda'_0 - 1/2}{\sigma^2} \end{aligned} $$

3.5

若假设 $H_1$ 下和假设 $H_0$ 下,观测信号 $z$ 都是零均值,但方差分别是 $\sigma_1^2$$\sigma_0^2$ 的高斯随机变量,设似然比检测门限为 $\lambda_0$

1

两个假设作出选择的判决形式如何;

$$ \begin{dcases} p(z|H_0) & = \frac{1}{\sqrt{2\pi}\sigma_0}\exp\frac{-z^2}{2\sigma_0^2}\ p(z|H_1) & = \frac{1}{\sqrt{2\pi}\sigma_1}\exp\frac{-z^2}{2\sigma_1^2} \end{dcases} $$ $$ \begin{aligned} \lambda(z) = \frac{p(z|H_0)}{p(z|H_1)} = \frac{\sigma_0}{\sigma_1}\exp\frac{\sigma_1^2 - \sigma_0^2}{2\sigma_0^2\sigma_1^2}z^2 & \mathop{\gtrless}\limits_{H_0}^{H_1} \lambda_0\ |z| & \mathop{\gtrless}\limits_{H_0}^{H_1} \lambda'0, \sigma_1 > \sigma_0\ |z| & \mathop{\gtrless}\limits{H_1}^{H_0} \lambda'_0, \sigma_1 < \sigma_0\ \lambda'_0 & = \sqrt{\frac{2}{\sigma_1^2 - \sigma_0^2}\ln(\frac{\sigma_1}{\sigma_0}\lambda_0)}\sigma_0\sigma_1 \end{aligned} $$

2

判决域是如何划分的;

3

求两类错误概率 $P(H_1|H_0)$$P(H_0|H_1)$ 。 $$ \sigma_1 > \sigma_0\rightarrow \ \begin{aligned} P(H_1|H_0) & = 2\int\nolimits_{-\infty}^{-\lambda'0} p(l|H_0)dl\ & = 2\int\nolimits{\frac{\lambda'0}{\sigma_0^2}}^\infty \frac{1}{\sqrt{2\pi}}\exp\frac{-t^2}{2}dt\ & = 2Q(\sqrt{\frac{2}{\sigma_1^2 - \sigma_0^2}\ln(\frac{\sigma_1}{\sigma_0}\lambda_0)}\sigma_1)\ P(H_0|H_1) & = \int\nolimits{-\lambda'_0}^{\lambda'_0} p(l|H_0)dl\ & = 1 - 2Q(\sqrt{\frac{2}{\sigma_1^2 - \sigma_0^2}\ln(\frac{\sigma_1}{\sigma_0}\lambda_0)}\sigma_0) \end{aligned} $$ $$ \sigma_1 < \sigma_0\rightarrow \ \begin{aligned} P(H_0|H_1) & = 2Q(\sqrt{\frac{2}{\sigma_0^2 - \sigma_1^2}\ln(\frac{\sigma_0}{\sigma_1}\lambda_1)}\sigma_0)\ P(H_1|H_0) & = 1 - 2Q(\sqrt{\frac{2}{\sigma_0^2 - \sigma_1^2}\ln(\frac{\sigma_0}{\sigma_1}\lambda_1)}\sigma_1) \end{aligned} $$

3.8

试推导如下情况的似然比。在假设 $H_1$ 下和假设 $H_0$ 下,观测信号 $z$ 是高斯随机变量,均值和方差分别为 $m_1, \sigma_1^2$$m_0, \sigma_0^2$ ,似然比检测门限为 $\lambda_0$ ,并求判决域和错误概率。

$$ \begin{dcases} p(z|H_1) & = \frac{1}{\sqrt{2\pi}\sigma_1}\exp\frac{-(z - m_1)^2}{2\sigma_1^2}\\ p(z|H_0) & = \frac{1}{\sqrt{2\pi}\sigma_0}\exp\frac{-(z - m_0)^2}{2\sigma_0^2} \end{dcases} $$ $$ \begin{aligned} \lambda(z) = \frac{p(z|H_0)}{p(z|H_1)} = \frac{\sigma_0}{\sigma_1}\exp\left(\frac{(z - m_0^2)}{2\sigma_0^2}-\frac{(z - m_1)^2}{2\sigma_0^2}\right) & \mathop{\gtrless}\limits_{H_0}^{H_1} \lambda_0\\ \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)z^2 - 2\left(\frac{m_0}{\sigma_0^2} - \frac{m_1}{\sigma_1^2}\right)z + \frac{m_0^2}{\sigma_0^2} - \frac{m_1^2}{\sigma_1^2} & \mathop{\gtrless}\limits_{H_0}^{H_1} 2\ln\frac{\lambda_0\sigma_1}{\sigma_0} \end{aligned} $$ $$ z_{1, 2} = \left. \left(\left(\frac{m_0}{\sigma_0^2} - \frac{m_1}{\sigma_1^2}\right) \pm \sqrt{\frac{(m_0 - m_1)^2}{\sigma_0^2\sigma_1^2} + 2\left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)}\ln\frac{\lambda_0\sigma_1}{\sigma_0}\right) \middle/ \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right) \right. $$ $$ \sigma_0 < \sigma_0\Rightarrow \\ \begin{aligned} H_1 & : (-\infty, z_1) \cup (z_2, + \infty)\\ H_0 & : (z_1, z_2) \end{aligned} $$ $$ \sigma_0 > \sigma_0\Rightarrow \\ \begin{aligned} H_0 & : (-\infty, z_0) \cup (z_1, + \infty)\\ H_1 & : (z_0, z_1) \end{aligned} $$

3.10

考虑二元假设检验问题,已知 $$ \begin{aligned} p(z|H_1) & = (\frac{1}{2\pi})^{1/2} \exp(-\frac{z^2}{2})\ p(z|H_0) & = \frac{1}{2}\exp(-|z|) \end{aligned} $$

1

建立似然比检验,并求判决域;

$$ \begin{aligned} \lambda(z) = \frac{p(z|H_0)}{p(z|H_1)} = \sqrt{\frac{2}{\pi}}\exp\left(|z|-\frac{z^2}{2}\right) & \mathop{\gtrless}\limits_{H_1}^{H_0} \lambda_0\ |z|-\frac{z^2}{2} & \mathop{\gtrless}\limits_{H_1}^{H_0} \ln\lambda_0 - \frac{1}{2}\ln\frac{2}{\pi} \end{aligned} $$ $$ z_{1, 2} = 1 \pm \sqrt{1 - 2\left(\ln\lambda_0 - \frac{1}{2}\frac{2}{\pi}\right)} $$ $$ \begin{aligned} H_0: & |z| \in (z_1, z_2)\ H_1: & |z| \in (-\infty, z_1) \cup (z_2, \infty) \end{aligned}

$$

2

$C_{00} = C_{11} = 0$$C_{01} = C_{10} = 1$ ,若 $P(H_1) = \frac{3}{4}$ ,试求贝叶斯检验的 $P(H_1|H_0)$$P(H_0|H_1)$

$$ \lambda_0 = \frac{P(H_0)}{P(H_1)}\frac{C_{10} - C_{00}}{C_{01} - C_{11}} = \frac{1}{3} $$

3.11

数字通信系统中,两假设下的接收信号分别为 $$ H_1: z_k = A + n_k, k = 1, 2, \ldots, N $$ $$ H_0: z_k = n_k, k = 1, 2, \ldots, N $$ 若 $N$ 个样本 $z$ 相互统计独立,噪声 $n_k \sim N(0, 1)$ , 先验概率 $P(H_1) = P(H_0) = \frac{1}{2}$ , 代价因于 $C_{00} = C_{11} = 0$$C_{01} = C_{10} = 1$

1

求最小总错误概率的判决规则;

$$ \begin{aligned} H_1: & p(z_1, z_2, \ldots, z_N|H_1) = \frac{1}{(2\pi)^{N/2}\sigma_n^N} \exp\frac{-\sum\limits_{i = 1}^N (z_k - A)^2}{2\sigma_n^2}\\ H_0: & p(z_1, z_2, \ldots, z_N|H_0) = \frac{1}{(2\pi)^{N/2}\sigma_n^N} \exp\frac{-\sum\limits_{i = 1}^N z_k^2}{2\sigma_n^2} \end{aligned} $$ $$ \begin{aligned} \lambda(z) = \frac{p(z_1, z_2, \ldots, z_N|H_1)}{p(z_1, z_2, \ldots, z_N|H_0)} = \exp\frac{\sum\limits_{i = 1}^N A(2z_k - A)}{2\sigma_\mathrm{n}^2} & \mathop{\gtrless}\limits_{H_0}^{H_1} \lambda_0 = 1\\ \bar{z} & \mathop{\gtrless}\limits_{H_0}^{H_1} \frac{A}{2} \end{aligned} $$

2

求最小总错误概率 $P_\mathrm{e}$ 。 $$ \begin{dcases} p(l|H_1) & = \frac{1}{\sqrt{2\pi/N}\sigma_\mathrm{n}}\exp\frac{-(l - A)^2}{2\sigma_\mathrm{n}^2/N}\ p(l|H_1) & = \frac{1}{\sqrt{2\pi/N}\sigma_\mathrm{n}}\exp\frac{-l^2}{2\sigma_\mathrm{n}^2/N} \end{dcases} $$ $$ \begin{aligned} P_\mathrm{e} & = P(H_0)P(H_1|H_0) + P(H_1)P(H_0|H_1)\ & = \frac{1}{2}\left(\int\nolimits_{\frac{A}{2}}^\infty p(l|H_0)dl + \int\nolimits_{-\infty}^\frac{A}{2} p(l|H_1)dl\right)\ & = \frac{1}{2}\mathrm{erfc}\frac{A\sqrt{N}}{2\sqrt{2}\sigma_\mathrm{n}} \end{aligned} $$