Skip to content

Latest commit

 

History

History
164 lines (126 loc) · 5.48 KB

3 第二级配置器.md

File metadata and controls

164 lines (126 loc) · 5.48 KB

第二级配置器

前言

第一级是直接调用malloc分配空间, 调用free释放空间, 第二级三就是建立一个内存池, 小于128字节的申请都直接在内存池申请, 不直接调用mallocfree. 本节分析第二级空间配置器, STL将第二级配置器设置为默认的配置器, 所以只要一次申请的空间不超过128字节就默认在内存池中申请空间, 超过才会调用第一级配置器.

第二级配置器

首先先来介绍3个常量.

  1. __ALIGN : 以8字节进行对齐
  2. __MAX_BYTES : 二级分配器最大分配的内存大小
  3. __NFREELISTS : 128字节能分配的的链表个数, 并且从每个链表保存的内存大小都是8的倍数, 而且都比前一个大8字节, 也就是分别是8, 16, 32...128字节
// 二级配置器
enum {__ALIGN = 8}; // 设置对齐要求. 对齐为8字节, 没有8字节自动补齐
enum {__MAX_BYTES = 128};   // 第二级配置器的最大一次性申请大小, 大于128就直接调用第一级配置器
enum {__NFREELISTS = __MAX_BYTES/__ALIGN};  // 链表个数, 分别代表8, 16, 32....字节的链表

再介绍一个宏操作, 这是进行对齐操作, 将不满8的倍数的填充成8的倍数.

static size_t FREELIST_INDEX(size_t bytes) \
{\
    return (((bytes) + ALIGN-1) / __ALIGN - 1);\
}

从allocate先切入分析

  1. 先判断申请的字节大小是不是大于128字节, 是, 则交给第一级配置器来处理. 否, 继续往下执行
  2. 找到分配的地址对齐后分配的是第几个大小的链表.
  3. 获得该链表指向的首地址, 如果链表没有多余的内存, 就先填充链表.
  4. 返回链表的首地址, 和一块能容纳一个对象的内存, 并更新链表的首地址
static void * allocate(size_t n)
{
      obj * __VOLATILE * my_free_list;
      obj * __RESTRICT result;
    
      if (n > (size_t) __MAX_BYTES) 
      {
        return(malloc_alloc::allocate(n));
      }
      my_free_list = free_list + FREELIST_INDEX(n);
      result = *my_free_list;
      if (result == 0) 	// 没有多余的内存, 就先填充链表.
      {
        void *r = refill(ROUND_UP(n));
        return r;
      }
      *my_free_list = result -> free_list_link;
      return (result);
};

refill内存填充.

  1. 向内存池申请空间的起始地址
  2. 如果只申请到一个对象的大小, 就直接返回一个内存的大小, 如果有更多的内存, 就继续执行
  3. 从第二个块内存开始, 把从内存池里面分配的内存用链表给串起来, 并返回一个块内存的地址给用户
// 内存填充
template <bool threads, int inst>
void* __default_alloc_template<threads, inst>::refill(size_t n)
{
  	int nobjs = 20;
  	char * chunk = chunk_alloc(n, nobjs);             // 向内存池申请空间的起始地址
  	obj * __VOLATILE * my_free_list;
  	obj * result;
  	obj * current_obj, * next_obj;
  	int i;

  	// 如果只申请到一个对象的大小, 就直接返回一个内存的大小
  	if (1 == nobjs) return(chunk);
  	my_free_list = free_list + FREELIST_INDEX(n);

  	// 申请的大小不只一个对象的大小的时候
  	result = (obj *)chunk;
  	// my_free_list指向内存池返回的地址的下一个对齐后的地址
  	*my_free_list = next_obj = (obj *)(chunk + n);
  	// 这里从第二个开始的原因主要是第一块地址返回给了用户, 现在需要把从内存池里面分配的内存用链表给串起来
  	for (i = 1; ; i++) 
  	{
	    current_obj = next_obj;
    	next_obj = (obj *)((char *)next_obj + n);
	    if (nobjs - 1 == i) 
        {
			current_obj -> free_list_link = 0;
      		break;
    	} 
        else 
        {
      		current_obj -> free_list_link = next_obj;
    	}
  		}
  	return(result);
}

再从deallocate结束

  1. 释放的内存大于128字节直接调用一级配置器进行释放
  2. 将内存直接还给对应大小的链表就行了, 并不用直接释放内存, 以便后面分配内存的时候快速.
static void deallocate(void *p, size_t n)
{
      obj *q = (obj *)p;
      obj * __VOLATILE * my_free_list;
	
      // 释放的内存大于128字节直接调用一级配置器进行释放
      if (n > (size_t) __MAX_BYTES) 
      {
        malloc_alloc::deallocate(p, n);
        return;
      }
      my_free_list = free_list + FREELIST_INDEX(n);
      q -> free_list_link = *my_free_list;
      *my_free_list = q;
}

统一的接口

定义符合STL规格的配置器接口, 不管是一级配置器还是二级配置器都是使用这个接口进行分配的

// 定义符合STL规格的配置器接口, 不管是一级配置器还是二级配置器都是使用这个接口进行分配的
template<class T, class Alloc>
class simple_alloc {
  public:
    static T *allocate(size_t n)
    { return 0 == n? 0 : (T*) Alloc::allocate(n * sizeof (T)); }
    static T *allocate(void)
    { return (T*) Alloc::allocate(sizeof (T)); }
    static void deallocate(T *p, size_t n)
    { if (0 != n) Alloc::deallocate(p, n * sizeof (T)); }
    static void deallocate(T *p)
    { Alloc::deallocate(p, sizeof (T)); }
};

总结

用链表来保存不同字节大小的内存块, 就很容易的进行维护, 而且每次的内存分配都直接可以从链表或者内存池中获得, 提升了我们申请内存的效率, 毕竟每次调用malloc和free效率是很低的, 特别是很小内存的时候.

STL默认的就是第二级配置器, 它会自动判断我们使用哪一个配置器.