-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllms.json
742 lines (742 loc) · 22.5 KB
/
llms.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
[
{
"id": 1,
"name": "LLaMA",
"vendor": "Meta",
"intro": "LLaMA-13B outperforms GPT-3(175B) and LLaMA-65B is competitive to PaLM-540M.<br />Base model for most follow-up works.",
"region": "US",
"tags": [
"Python",
"OpenSource",
"1B",
"10B"
],
"url": "https://github.com/facebookresearch/llama",
"icon": "",
"publish_time": "2023-02-14T09:29:12Z"
},
{
"id": 2,
"name": "llama.cpp",
"vendor": "@ggerganov",
"intro": "c/cpp implementation for llama and some other models, using quantization.",
"region": "",
"tags": [
"C/C++",
"OpenSource",
"1B",
"10B"
],
"url": "https://github.com/ggerganov/llama.cpp",
"icon": "",
"publish_time": "2023-03-10T18:58:00Z"
},
{
"id": 3,
"name": "Alpaca",
"vendor": "Stanford",
"intro": "use 52K instruction-following data generated by Self-Instructt techniques to fine-tune 7B LLaMA,<br /> the resulting model, Alpaca, behaves similarly to the `text-davinci-003` model on the Self-Instruct instruction-following evaluation suite.<br />Alpaca has inspired many follow-up models.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/tatsu-lab/stanford_alpaca",
"icon": "",
"publish_time": "2023-03-10T23:33:09Z"
},
{
"id": 4,
"name": "BELLE",
"vendor": "LianJiaTech",
"intro": "maybe the first Chinese model to follow Alpaca.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/LianjiaTech/BELLE",
"icon": "",
"publish_time": "2023-03-17T09:44:11Z"
},
{
"id": 5,
"name": "ChatGLM-6B",
"vendor": "Tsinghua",
"intro": "well-known Chinese model, in chat mode, and can run on single GPU.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/THUDM/ChatGLM-6B",
"icon": "",
"publish_time": "2023-03-13T12:00:18Z"
},
{
"id": 6,
"name": "Dolly",
"vendor": "Databricks",
"intro": "use Alpaca data to fine-tune a 2-year-old model: GPT-J, which exhibits surprisingly high quality<br /> instruction following behavior not characteristic of the foundation model on which it is based.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/databrickslabs/dolly",
"icon": "",
"publish_time": "2023-03-24T16:15:53Z"
},
{
"id": 7,
"name": "Alpaca-LoRA",
"vendor": "@tloen",
"intro": "trained within hours on a single RTX 4090,<br />reproducing the <a href=\"https://github.com/tatsu-lab/stanford_alpaca\">Stanford Alpaca</a> results using <a href=\"https://arxiv.org/pdf/2106.09685.pdf\">low-rank adaptation (LoRA)</a>,<br />and can run on a Raspberry pi.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/tloen/alpaca-lora",
"icon": "",
"publish_time": "2023-03-13T21:52:36Z"
},
{
"id": 8,
"name": "ColossalChat",
"vendor": "ColossalAI",
"intro": "provides a unified large language model framework, including:<br />Supervised datasets collection<br />Supervised instructions fine-tuning<br />Reward model training<br />RLHF<br />Quantization inference<br />Fast model deploying<br />Perfectly integrated with the Hugging Face ecosystem",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/hpcaitech/ColossalAI/blob/main/applications/Chat/README.md",
"icon": "",
"publish_time": null
},
{
"id": 9,
"name": "LLaMA-Adapter",
"vendor": "Shanghai AI Lab",
"intro": "Fine-tuning LLaMA to follow instructions within 1 Hour and 1.2M Parameters",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/ZrrSkywalker/LLaMA-Adapter",
"icon": "",
"publish_time": "2023-03-19T15:08:12Z"
},
{
"id": 10,
"name": "Alpaca-CoT",
"vendor": "PhoebusSi",
"intro": "extend CoT data to Alpaca to boost its reasoning ability.<br />aims to build an instruction finetuning (IFT) platform with extensive instruction collection (especially the CoT datasets)<br /> and a unified interface for various large language models.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/PhoebusSi/Alpaca-CoT",
"icon": "",
"publish_time": "2023-03-24T09:15:41Z"
},
{
"id": 11,
"name": "Llama-X",
"vendor": "AetherCortex",
"intro": "Open Academic Research on Improving LLaMA to SOTA LLM",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/AetherCortex/Llama-X",
"icon": "",
"publish_time": "2023-03-30T11:57:12Z"
},
{
"id": 12,
"name": "OpenChatKit",
"vendor": "TogetherComputer",
"intro": "OpenChatKit provides a powerful, open-source base to create both specialized and general purpose chatbots for various applications.<br /> The kit includes an instruction-tuned language models, a moderation model, and an extensible retrieval system for including <br />up-to-date responses from custom repositories.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/togethercomputer/OpenChatKit",
"icon": "",
"publish_time": "2023-03-03T00:12:53Z"
},
{
"id": 13,
"name": "GPT4All",
"vendor": "nomic-ai",
"intro": "trained on a massive collection of clean assistant data including code, stories and dialogue",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/nomic-ai/gpt4all",
"icon": "",
"publish_time": "2023-03-27T18:49:32Z"
},
{
"id": 14,
"name": "Chinese-LLaMA-Alpaca",
"vendor": "@ymcui",
"intro": "expand the Chinese vocabulary based on the original LLaMA and use Chinese data for secondary pre-training,<br /> further enhancing Chinese basic semantic understanding. Additionally, the project uses Chinese instruction data<br /> for fine-tuning on the basis of the Chinese LLaMA, significantly improving the model's understanding and execution of instructions.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/ymcui/Chinese-LLaMA-Alpaca",
"icon": "",
"publish_time": "2023-03-15T11:09:39Z"
},
{
"id": 15,
"name": "Vicuna",
"vendor": "UC Berkley, Stanford, CMU",
"intro": "Impressing GPT-4 with 90% ChatGPT Quality",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/lm-sys/FastChat",
"icon": "",
"publish_time": "2023-03-19T00:18:02Z"
},
{
"id": 16,
"name": "bloomz.cpp",
"vendor": "@NouamaneTazi",
"intro": "C++ implementation for BLOOM inference.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/NouamaneTazi/bloomz.cpp",
"icon": "",
"publish_time": "2023-03-12T18:40:53Z"
},
{
"id": 17,
"name": "LMFlow",
"vendor": "HKUST",
"intro": "LMFlow is an extensible, convenient, and efficient toolbox for finetuning large machine learning models, designed to be user-friendly, speedy and reliable, and accessible to the entire community.<br />RAFT is a new alignment algorithm, which is more efficient than conventional (PPO-based) RLHF.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/OptimalScale/LMFlow",
"icon": "",
"publish_time": "2023-03-27T13:56:29Z"
},
{
"id": 18,
"name": "Cerebras-GPT",
"vendor": "Cerebras Systems",
"intro": "Pretrained LLM, GPT-3 like, Commercially available, efficiently trained on the <a href=\"https://www.cerebras.net/andromeda/\">Andromeda</a> AI supercomputer,<br />trained in accordance with <a href=\"https://arxiv.org/abs/2203.15556\">Chinchilla scaling laws</a> (20 tokens per model parameter) which is compute-optimal.",
"region": "",
"tags": [],
"url": "https://huggingface.co/cerebras/Cerebras-GPT-13B",
"icon": ""
},
{
"id": 19,
"name": "ChatDoctor",
"vendor": "UT Southwestern/UIUC/OSU/HDU",
"intro": "Maybe the first domain-specific chat model tuned on LLaMA.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/Kent0n-Li/ChatDoctor",
"icon": "",
"publish_time": "2023-03-21T23:40:31Z"
},
{
"id": 20,
"name": "Open Assistant",
"vendor": "LAION-AI",
"intro": "a project meant to give everyone access to a great chat based large language model.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/LAION-AI/Open-Assistant",
"icon": "",
"publish_time": "2022-12-13T05:24:17Z"
},
{
"id": 21,
"name": "baize",
"vendor": "UCSD/SYSU",
"intro": "fine-tuned with <a href=\"https://github.com/microsoft/LoRA\">LoRA</a>. It uses 100k dialogs generated by letting ChatGPT chat with itself. <br />Alpaca's data is also used to improve its performance.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/project-baize/baize",
"icon": "",
"publish_time": "2023-03-31T17:56:03Z"
},
{
"id": 22,
"name": "Koala",
"vendor": "UC Berkley",
"intro": "Rather than maximizing <strong>quantity</strong> by scraping as much web data as possible, the team focus on collecting a small <strong>high-quality</strong> dataset.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/young-geng/EasyLM",
"icon": "",
"publish_time": "2022-11-22T12:55:20Z"
},
{
"id": 23,
"name": "langchain-ChatGLM",
"vendor": "@imClumsyPanda",
"intro": "local knowledge based ChatGLM with langchain.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/imClumsyPanda/langchain-ChatGLM",
"icon": "",
"publish_time": "2023-03-31T12:12:45Z"
},
{
"id": 24,
"name": "Firefly",
"vendor": "@yangjianxin1",
"intro": "Instruction Tuning on Chinese dataset. Vocabulary pruning, ZeRO, and tensor parallelism are used to effectively reduce memory consumption and improve training efficiency.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/yangjianxin1/Firefly",
"icon": "",
"publish_time": "2023-04-02T14:55:59Z"
},
{
"id": 25,
"name": "GPT-4-LLM",
"vendor": "microsoft",
"intro": "aims to share data generated by GPT-4 for building an instruction-following LLMs with supervised learning and reinforcement learning.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM",
"icon": "",
"publish_time": "2023-04-06T03:12:14Z"
},
{
"id": 26,
"name": "pythia",
"vendor": "EleutherAI",
"intro": "combine interpretability analysis and scaling laws to understand how knowledge develops and evolves during training in autoregressive transformers.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/EleutherAI/pythia",
"icon": "",
"publish_time": "2021-12-25T23:58:44Z"
},
{
"id": 27,
"name": "StackLLaMA",
"vendor": "Hugging Face",
"intro": "trained on StackExchange data and the main goal is to serve as a tutorial and walkthrough on how to train model with RLHF and not primarily model performance.",
"region": "",
"tags": [],
"url": "https://huggingface.co/trl-lib/llama-7b-se-rl-peft",
"icon": ""
},
{
"id": 28,
"name": "ChatLLaMA",
"vendor": "Nebuly",
"intro": "a library that allows you to create hyper-personalized ChatGPT-like assistants using your own data and the least amount of compute possible.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/nebuly-ai/nebullvm/tree/main/apps/accelerate/chatllam",
"icon": "",
"publish_time": null
},
{
"id": 29,
"name": "ChatLLaMA",
"vendor": "@juncongmoo",
"intro": "LLaMA-based RLHF model, runnable in a single GPU.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/juncongmoo/chatllama",
"icon": "",
"publish_time": "2023-02-27T19:08:45Z"
},
{
"id": 30,
"name": "minichatgpt",
"vendor": "@juncongmoo",
"intro": "To Train ChatGPT In 5 Minutes with ColossalAI.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/juncongmoo/minichatgpt",
"icon": "",
"publish_time": "2023-02-23T16:22:16Z"
},
{
"id": 31,
"name": "Luotuo-Chinese-LLM",
"vendor": "@LC1332",
"intro": "Instruction fine-tuned Chinese Language Models, with colab provided!",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/LC1332/Luotuo-Chinese-LLM",
"icon": "",
"publish_time": "2023-03-21T02:43:12Z"
},
{
"id": 32,
"name": "Chinese-Vicuna",
"vendor": "@Facico",
"intro": "A Chinese Instruction-following LLaMA-based Model, fine-tuned with Lora, cpp inference supported, colab provided.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/Facico/Chinese-Vicuna",
"icon": "",
"publish_time": "2023-03-23T01:54:50Z"
},
{
"id": 33,
"name": "InstructGLM",
"vendor": "@yanqiangmiffy",
"intro": "ChatGLM based instruction-following model, fine-tuned on a variety of data sources, supports deepspeed accelerating and LoRA.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/yanqiangmiffy/InstructGLM",
"icon": "",
"publish_time": "2023-03-23T03:07:04Z"
},
{
"id": 34,
"name": "Wombat",
"vendor": "alibaba",
"intro": "a novel learning paradigm called RRHF, as an alternative of RLHF, is proposed, which scores responses generated by different sampling policies and learns to align them with human preferences through ranking loss. And the performance is comparable to RLHF, with less models used in the process.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/GanjinZero/RRHF",
"icon": "",
"publish_time": "2023-04-10T08:21:45Z"
},
{
"id": 35,
"name": "deepspeed-chat",
"vendor": "microsoft",
"intro": "Easy, Fast and Affordable RLHF Training of ChatGPT-like Models at All Scales.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/microsoft/DeepSpeed/tree/master/blogs/deepspeed-chat",
"icon": "",
"publish_time": null
},
{
"id": 36,
"name": "alpaca-glassoff",
"vendor": "@WuJunde",
"intro": "a mini image-acceptable Chat AI can run on your own laptop, based on <a href=\"https://github.com/tatsu-lab/stanford_alpaca\">stanford-alpaca</a> and <a href=\"https://github.com/tloen/alpaca-lora\">alpaca-lora</a>.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/WuJunde/alpaca-glassoff",
"icon": "",
"publish_time": "2023-04-09T14:41:48Z"
},
{
"id": 37,
"name": "Visual Med-Alpaca",
"vendor": "Cambridge",
"intro": "a multi-modal foundation model designed specifically for the biomedical domain",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/cambridgeltl/visual-med-alpaca",
"icon": "",
"publish_time": "2023-04-11T15:31:14Z"
},
{
"id": 38,
"name": "Guanaco",
"vendor": "@JosephusCheung",
"intro": "A Multilingual Instruction-Following Language Model",
"region": "",
"tags": [],
"url": "https://huggingface.co/datasets/JosephusCheung/GuanacoDataset",
"icon": ""
},
{
"id": 39,
"name": "CAMEL",
"vendor": "KAUST",
"intro": "a novel communicative agent framework named <strong>role-playing</strong>, using <strong>inception prompting</strong> to guide chat agents toward task completion while maintaining consistency with human intentions.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/lightaime/camel",
"icon": "",
"publish_time": "2023-03-17T21:41:54Z"
},
{
"id": 40,
"name": "IDPChat",
"vendor": "BaihaiAI",
"intro": "Chinese multi-modal model, single GPU runnable, easy to deploy, UI provided.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/BaihaiAI/IDPChat",
"icon": "",
"publish_time": "2023-04-09T13:20:24Z"
},
{
"id": 41,
"name": "ChatRWKV",
"vendor": "BlinkDL",
"intro": "powered by RWKV (<strong>100% RNN</strong>), Training sponsored by Stability EleutherAI.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/BlinkDL/ChatRWKV",
"icon": "",
"publish_time": "2023-01-13T08:07:40Z"
},
{
"id": 42,
"name": "LLM Zoo",
"vendor": "@FreedomIntelligence",
"intro": "a project that provides data, models, and evaluation benchmark for large language models.<br />model released: Phoenix, Chimera",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/FreedomIntelligence/LLMZoo",
"icon": "",
"publish_time": "2023-04-01T12:08:23Z"
},
{
"id": 43,
"name": "MiniGPT-4",
"vendor": "KAUST",
"intro": "MiniGPT-4 aligns a frozen visual encoder from BLIP-2 with a frozen LLM, Vicuna, using just one projection layer, and yields many emerging vision-language capabilities similar to those demonstrated in GPT-4.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/Vision-CAIR/MiniGPT-4",
"icon": "",
"publish_time": "2023-04-15T22:17:09Z"
},
{
"id": 44,
"name": "Huatuo",
"vendor": "HIT",
"intro": "fine-tuned with Chinese medical knowledge dataset, which is generated by using gpt3.5 api.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese",
"icon": "",
"publish_time": "2023-03-31T13:21:24Z"
},
{
"id": 45,
"name": "LLaVA",
"vendor": "UW–Madison/MSR/Columbia University",
"intro": "visual instruction tuning is proposed, towards building large language and vision models with GPT-4 level capabilities.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/haotian-liu/LLaVA",
"icon": "",
"publish_time": "2023-04-17T16:13:11Z"
},
{
"id": 46,
"name": "StableLM",
"vendor": "Stability-AI",
"intro": "Stability AI Language Models.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/Stability-AI/StableLM",
"icon": "",
"publish_time": "2023-04-19T14:02:16Z"
},
{
"id": 47,
"name": "DoctorGLM",
"vendor": "ShanghaiTech, etc",
"intro": "Chinese medical consultation model fine-tuned on ChatGLM-6B.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/xionghonglin/DoctorGLM",
"icon": "",
"publish_time": "2023-03-29T10:48:16Z"
},
{
"id": 48,
"name": "RedPajama-Data",
"vendor": "TogetherComputer",
"intro": "An Open Source Recipe to Reproduce LLaMA training dataset.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/togethercomputer/RedPajama-Data",
"icon": "",
"publish_time": "2023-04-14T20:43:41Z"
},
{
"id": 49,
"name": "MOSS",
"vendor": "FDU",
"intro": "An open-source tool-augmented conversational language model from Fudan University.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/OpenLMLab/MOSS",
"icon": "",
"publish_time": "2023-04-15T14:07:44Z"
},
{
"id": 50,
"name": "BBT-2",
"vendor": "ssymmetry & FDU",
"intro": "120B open-source LM.",
"region": "",
"tags": [],
"url": "https://bbt.ssymmetry.com/",
"icon": ""
},
{
"id": 51,
"name": "BioMedGPT-1.6B",
"vendor": "Tsinghua AIR",
"intro": "a pre-trained multi-modal molecular foundation model with 1.6B parameters that associates 2D molecular graphs with texts.",
"region": "",
"tags": [
"OpenSource"
],
"url": "https://github.com/BioFM/OpenBioMed",
"icon": "",
"publish_time": "2023-04-13T04:10:04Z"
},
{
"id": 52,
"name": "ChatGPT",
"vendor": "OpenAI",
"intro": "The most famous LLM model in the world.",
"region": "US",
"tags": [
"100B",
"Bussiness"
],
"url": "https://chat.openai.com/",
"icon": "https://img1.imgtp.com/2023/04/29/vPyzuoLc.png",
"publish_time": "2022-11-30T00:00:00Z"
},
{
"id": 53,
"name": "GPT-4",
"vendor": "OpenAI",
"intro": "The most powerful LLM model till now in the world.",
"region": "US",
"tags": [
"Bussiness",
"Paid"
],
"url": "https://openai.com/product/gpt-4",
"icon": "https://img1.imgtp.com/2023/04/29/vPyzuoLc.png",
"publish_time": "2023-03-15T00:00:00Z"
},
{
"id": 54,
"name": "文心一言",
"vendor": "百度",
"intro": "文心一言是百度全新一代知识增强大语言模型,文心大模型家族的新成员。它能够与人对话互动,回答问题,协助创作,高效便捷地帮助人们获取信息、知识和灵感。",
"region": "CN",
"tags": [
"Bussiness",
"Internal test"
],
"url": "https://yiyan.baidu.com/welcome",
"icon": "https://img1.imgtp.com/2023/04/26/VWKykOLV.png",
"publish_time": "2023-03-16T08:00:00Z"
},
{
"id": 55,
"name": "通义千问",
"vendor": "阿里云",
"intro": "通义千问是由阿里巴巴集团旗下的云端运算服务的科技公司阿里云开发的聊天机器人,能够与人交互、回答问题及协作创作",
"region": "CN",
"tags": [
"Bussiness",
"Internal test"
],
"url": "https://tongyi.aliyun.com",
"icon": "https://img.alicdn.com/imgextra/i4/O1CN01fbqryd1ZossCmdlga_!!6000000003242-54-tps-200-200.apng",
"publish_time": "2023-04-07T08:00:00Z"
},
{
"id": 56,
"name": "360 智脑",
"vendor": "360",
"intro": "360 智脑是基于360的大模型开发的人工智能产品矩阵,目前已落地360搜索场景并开放测试",
"region": "CN",
"tags": [
"Bussiness",
"Internal test"
],
"url": "https://www.so.com/zt/invite.html#/",
"icon": "",
"publish_time": null
},
{
"id": 57,
"name": "天工",
"vendor": "昆仑万维",
"intro": "天工作为一款大型语言模型,拥有强大的自然语言处理和智能交互能力,能够实现智能问答、聊天互动、文本生成等多种应用场景,并且具有丰富的知识储备,涵盖科学、技术、文化、艺术、历史等领域。",
"region": "CN",
"tags": [
"Bussiness",
"Internal test"
],
"url": "https://tiangong.kunlun.com/",
"icon": "https://img1.imgtp.com/2023/04/26/Cb5pHZUl.png"
}
]