forked from postech-ami/SMILE-Dataset
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpt3_inference.py
139 lines (115 loc) · 4.87 KB
/
gpt3_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import pdb
import openai
import argparse
import random
import numpy as np
import torch
import json
import os
from tqdm import tqdm
import sys
sys.path.append("./caption_evaluation")
from eval_metrics import evaluate_metrics_total
def fewshot_metadata(engine, shot1, shot2, shot3, query):
prompt = f"{shot1}###{shot2}###{shot3}###{query}"
response = openai.Completion.create(
engine=engine,
prompt=prompt,
temperature=0.5,
max_tokens=200,
)
answer = response['choices'][0]['text']
return answer
def zeroshot_metadata(engine, query):
response = openai.Completion.create(
engine=engine,
prompt=query,
temperature=0.5,
max_tokens=200,
)
answer = response['choices'][0]['text']
return answer
def seed_everything(seed: int):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def zeroshot(args):
with open(args.val_data, "r") as f:
validation_data = json.load(f)
pred_caption = []
gt_caption = []
for i in tqdm(range(len(validation_data))):
temp = 1
inputs = validation_data[i]['conversations'][0]['value'] + "### Assistant:"
while temp:
#in case if there is network error while connecting to openai api
try:
answer = zeroshot_metadata(args.engine, inputs)
temp = None
except:
temp = 1
answer=answer.replace("\n", "")
#define dictionary
pred_dict={"file_name":i, "caption_predicted":answer}
gt_dict = {"file_name":i, "caption_reference_01":validation_data[i]['conversations'][1]['value']}
pred_caption.append(pred_dict)
gt_caption.append(gt_dict)
evaluate_metrics_total(pred_caption, gt_caption, 1)
def fewshot(args):
with open(args.val_data, "r") as f:
validation_data = json.load(f)
with open(args.train_data, "r") as f:
train_data = json.load(f)
total = len(train_data)
pred_caption = []
gt_caption = []
for i in tqdm(range(len(validation_data))):
rand_list = random.sample(range(0, total), k=3)
shot1 = train_data[rand_list[0]]["conversations"][0]["value"] + "### Assistant:" +train_data[rand_list[0]]["conversations"][1]["value"]
shot2 = train_data[rand_list[1]]["conversations"][0]["value"] + "### Assistant:" + \
train_data[rand_list[1]]["conversations"][1]["value"]
shot3 = train_data[rand_list[2]]["conversations"][0]["value"] + "### Assistant:" + \
train_data[rand_list[2]]["conversations"][1]["value"]
temp = 1
inputs = validation_data[i]['conversations'][0]['value'] + "### Assistant:"
while temp:
try:
answer = fewshot_metadata(args.engine, shot1, shot2, shot3, inputs)
temp = None
except:
rand_list = random.sample(range(0, total), k=3)
shot1 = train_data[rand_list[0]]["conversations"][0]["value"] + "### Assistant:" + \
train_data[rand_list[0]]["conversations"][1]["value"]
shot2 = train_data[rand_list[1]]["conversations"][0]["value"] + "### Assistant:" + \
train_data[rand_list[1]]["conversations"][1]["value"]
shot3 = train_data[rand_list[2]]["conversations"][0]["value"] + "### Assistant:" + \
train_data[rand_list[2]]["conversations"][1]["value"]
temp = 1
answer = answer.replace("\n", "")
pred_dict={"file_name":i, "caption_predicted":answer}
gt_dict = {"file_name":i, "caption_reference_01":validation_data[i]['conversations'][1]['value']}
pred_caption.append(pred_dict)
gt_caption.append(gt_dict)
evaluate_metrics_total(pred_caption, gt_caption, 1)
def main(args):
if args.shot=="zeroshot":
zeroshot(args)
elif args.shot=="fewshot":
fewshot(args)
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-openai_key',default=None, help="Enter your openai api key")
parser.add_argument('-engine', default="text-davinci-002", help="Enter your openai api key")
parser.add_argument('-shot', default="zeroshot", help="Choose between zeroshot or fewshot")
parser.add_argument('-val_data', default="SMILE_v1_evaluation/sitcom_reasoning_val.json", help="Enter the validation data path")
parser.add_argument('-train_data', default="SMILE_v1_evaluation/sitcom_reasoning_train.json",help="Enter the training data path")
parser.add_argument('-random_seed', default=1234,type=int, help="random seed")
args = parser.parse_args()
openai.api_key = args.openai_key
seed_everything(args.random_seed)
main(args)