Skip to content

Latest commit

 

History

History
491 lines (374 loc) · 22.4 KB

DIFF.md

File metadata and controls

491 lines (374 loc) · 22.4 KB

Spark Diff

Add the following import to your Scala code:

import uk.co.gresearch.spark.diff._

or this import to your Python code:

# noinspection PyUnresolvedReferences
from gresearch.spark.diff import *

This adds a diff transformation to Dataset and DataFrame that computes the differences between two datasets / dataframes, i.e. which rows of one dataset / dataframes to add, delete or change to get to the other dataset / dataframes.

For example, in Scala

val left = Seq((1, "one"), (2, "two"), (3, "three")).toDF("id", "value")
val right = Seq((1, "one"), (2, "Two"), (4, "four")).toDF("id", "value")

or in Python:

left = spark.createDataFrame([(1, "one"), (2, "two"), (3, "three")], ["id", "value"])
right = spark.createDataFrame([(1, "one"), (2, "Two"), (4, "four")], ["id", "value"])

diffing becomes as easy as:

left.diff(right).show()
diff id value
N 1 one
D 2 two
I 2 Two
D 3 three
I 4 four

With columns that provide unique identifiers per row (here id), the diff looks like:

left.diff(right, "id").show()
diff id left_value right_value
N 1 one one
C 2 two Two
D 3 three null
I 4 null four

Equivalent alternative is this hand-crafted transformation (Scala)

left.withColumn("exists", lit(1)).as("l")
  .join(right.withColumn("exists", lit(1)).as("r"),
    $"l.id" <=> $"r.id",
    "fullouter")
  .withColumn("diff",
    when($"l.exists".isNull, "I").
      when($"r.exists".isNull, "D").
      when(!($"l.value" <=> $"r.value"), "C").
      otherwise("N"))
  .show()

Statistics on the differences can be obtained by

left.diff(right, "id").groupBy("diff").count().show()
diff count
N 1
I 1
D 1
C 1

The diff transformation can optionally provide a change column that lists all non-id column names that have changed. This column is an array of strings and only set for "N" and "C"action rows; it is null for "I" and "D"action rows.

diff changes id left_value right_value
N [] 1 one one
C [value] 2 two Two
D null 3 three null
I null 4 null four

Features

This diff transformation provides the following features:

  • id columns are optional
  • provides typed diffAs and diffWith transformations
  • supports null values in id and non-id columns
  • detects null value insertion / deletion
  • configurable via DiffOptions:
    • diff column name (default: "diff"), if default name exists in diff result schema
    • diff action labels (defaults: "N", "I", "D", "C"), allows custom diff notation,
      e.g. Unix diff left-right notation (<, >) or git before-after format (+, -, -+)
    • custom equality operators (e.g. double comparison with epsilon threshold)
    • different diff result formats
    • sparse diffing mode
  • optionally provides a change column that lists all non-id column names that have changed (only for "C" action rows)
  • guarantees that no duplicate columns exist in the result, throws a readable exception otherwise

Configuring Diff

Diffing can be configured via an optional DiffOptions instance (see Methods below).

option default description
diffColumn "diff" The 'diff column' provides the action or diff value encoding if the respective row has been inserted, changed, deleted or has not been changed at all.
leftColumnPrefix "left" Non-id columns of the 'left' dataset are prefixed with this prefix.
rightColumnPrefix "right" Non-id columns of the 'right' dataset are prefixed with this prefix.
insertDiffValue "I" Inserted rows are marked with this string in the 'diff column'.
changeDiffValue "C" Changed rows are marked with this string in the 'diff column'.
deleteDiffValue "D" Deleted rows are marked with this string in the 'diff column'.
nochangeDiffValue "N" Unchanged rows are marked with this string in the 'diff column'.
changeColumn none An array with the names of all columns that have changed values is provided in this column (only for unchanged and changed rows, null otherwise).
diffMode DiffModes.Default Configures the diff output format. For details see Diff Modes section below.
sparseMode false When true, only values that have changed are provided on left and right side, null is used for un-changed values.
defaultComparator DiffComparators.default() The default equality for all value columns.
dataTypeComparators empty Map from data types to comparators.
columnNameComparators empty Map from column names to comparators.

Either construct an instance via the constructor …

// Scala
import uk.co.gresearch.spark.diff.{DiffOptions, DiffMode}
val options = DiffOptions("d", "l", "r", "i", "c", "d", "n", Some("changes"), DiffMode.Default, false)
# Python
from gresearch.spark.diff import DiffOptions, DiffMode
options = DiffOptions("d", "l", "r", "i", "c", "d", "n", "changes", DiffMode.Default, False)

… or via the .with* methods. The former requires most options to be specified, whereas the latter only requires the ones that deviate from the default. And it is more readable.

Start from the default options DiffOptions.default and customize as follows:

// Scala
import uk.co.gresearch.spark.diff.{DiffOptions, DiffMode, DiffComparators}

val options = DiffOptions.default
  .withDiffColumn("d")
  .withLeftColumnPrefix("l")
  .withRightColumnPrefix("r")
  .withInsertDiffValue("i")
  .withChangeDiffValue("c")
  .withDeleteDiffValue("d")
  .withNochangeDiffValue("n")
  .withChangeColumn("changes")
  .withDiffMode(DiffMode.Default)
  .withSparseMode(true)
  .withDefaultComparator(DiffComparators.epsilon(0.001))
  .withComparator(DiffComparators.epsilon(0.001), DoubleType)
  .withComparator(DiffComparators.epsilon(0.001), "float_column")
# Python
from pyspark.sql.types import DoubleType
from gresearch.spark.diff import DiffOptions, DiffMode, DiffComparators

options = DiffOptions() \
  .with_diff_column("d") \
  .with_left_column_prefix("l") \
  .with_right_column_prefix("r") \
  .with_insert_diff_value("i") \
  .with_change_diff_value("c") \
  .with_delete_diff_value("d") \
  .with_nochange_diff_value("n") \
  .with_change_column("changes") \
  .with_diff_mode(DiffMode.Default) \
  .with_sparse_mode(True) \
  .with_default_comparator(DiffComparators.epsilon(0.01)) \
  .with_data_type_comparator(DiffComparators.epsilon(0.001), DoubleType()) \
  .with_column_name_comparator(DiffComparators.epsilon(0.001), "float_column")

Diffing Modes

The result of the diff transformation can have the following formats:

  • column by column: The non-id columns are arranged column by column, i.e. for each non-id column there are two columns next to each other in the diff result, one from the left and one from the right dataset. This is useful to easily compare the values for each column.
  • side by side: The non-id columns from the left and right dataset are are arranged side by side, i.e. first there are all columns from the left dataset, then from the right one. This is useful to visually compare the datasets as a whole, especially in conjunction with the sparse mode.
  • left side: Only the columns of the left dataset are present in the diff output. This mode provides the left dataset as is, annotated with diff action and optional changed column names.
  • right side: Only the columns of the right dataset are present in the diff output. This mode provides the right dataset as given, as well as the diff action that has been applied to it. This serves as a patch that, applied to the left dataset, results in the right dataset.

With the following two datasets left and right:

case class Value(id: Int, value: Option[String], label: Option[String])

val left = Seq(
  Value(1, Some("one"), None),
  Value(2, Some("two"), Some("number two")),
  Value(3, Some("three"), Some("number three")),
  Value(4, Some("four"), Some("number four")),
  Value(5, Some("five"), Some("number five")),
).toDS

val right = Seq(
  Value(1, Some("one"), Some("one")),
  Value(2, Some("Two"), Some("number two")),
  Value(3, Some("Three"), Some("number Three")),
  Value(4, Some("four"), Some("number four")),
  Value(6, Some("six"), Some("number six")),
).toDS

the diff modes produce the following outputs:

Column by Column

diff id left_value right_value left_label right_label
C 1 one one null one
C 2 two Two number two number two
C 3 three Three number three number Three
N 4 four four number four number four
D 5 five null number five null
I 6 null six null number six

Side by Side

diff id left_value left_label right_value right_label
C 1 one null one one
C 2 two number two Two number two
C 3 three number three Three number Three
N 4 four number four four number four
D 5 five number five null null
I 6 null null six number six

Left Side

diff id value label
C 1 one null
C 2 two number two
C 3 three number three
N 4 four number four
D 5 five number five
I 6 null null

Right Side

diff id value label
C 1 one one
C 2 Two number two
C 3 Three number Three
N 4 four number four
D 5 null null
I 6 six number six

Sparse Mode

The diff modes above can be combined with sparse mode. In sparse mode, only values that differ between the two datasets are in the diff result, all other values are null.

Above Column by Column example would look in sparse mode as follows:

diff id left_value right_value left_label right_label
C 1 null null null one
C 2 two Two null null
C 3 three Three number three number Three
N 4 null null null null
D 5 five null number five null
I 6 null six null number six

Comparators (Equality)

Values are compared for equality with the default <=> operator, which considers values equal when both sides are null, or both sides are not null and equal.

The following alternative comparators are provided:

Comparator Description
DiffComparators.epsilon(epsilon) Two values are equal when they are at most epsilon apart.

The comparator can be configured to use epsilon as an absolute (.asAbsolute()) threshold, or as relative (.asRelative()) to the larger value. Further, the threshold itself can be considered equal (.asInclusive()) or not equal (.asExclusive()):
  • DiffComparators.epsilon(epsilon).asAbsolute().asInclusive():
    x and y are equal iff abs(x - y) ≤ epsilon
  • DiffComparators.epsilon(epsilon).asAbsolute().asExclusive():
    x and y are equal iff abs(x - y) < epsilon
  • DiffComparators.epsilon(epsilon).asRelative().asInclusive():
    x and y are equal iff abs(x - y) ≤ epsilon * max(abs(x), abs(y))
  • DiffComparators.epsilon(epsilon).asRelative().asExclusive():
    x and y are equal iff abs(x - y) < epsilon * max(abs(x), abs(y))
DiffComparators.string() Two StringType values are compared while ignoring white space differences. For this comparison, sequences of whitespaces are collapesed into single whitespaces, leading and trailing whitespaces are removed. With DiffComparators.string(false), string values are compared with the default comparator.
DiffComparators.duration(duration) Two DateType or TimestampType values are equal when they are at most duration apart. That duration is an instance of java.time.Duration.

The comparator can be configured to consider duration as equal (.asInclusive()) or not equal (.asExclusive()):
  • DiffComparators.duration(duration).asInclusive():
    x and y are equal iff x - y ≤ duration
  • DiffComparators.duration(duration).asExclusive():
    x and y are equal iff x - y < duration
DiffComparators.map[K,V](keyOrderSensitive) (Scala only)
DiffComparators.map(keyType, valueType, keyOrderSensitive)
Two Map[K,V] values are equal when they match in all their keys and values. With keyOrderSensitive=true, the order of the keys matters, with keyOrderSensitive=false (default), the order of keys is ignored.

An example:

val left = Seq((1, 1.0), (2, 2.0), (3, 3.0)).toDF("id", "value")
val right = Seq((1, 1.0), (2, 2.02), (3, 3.05)).toDF("id", "value")
left.diff(right, "id").show()
diff id left_value right_value
N 1 1.0 1.0
C 2 2.0 2.02
C 3 3.0 3.05

The second and third rows are considered "C"hanged because 2.0 != 2.02 and 3.0 != 3.05, respectively.

With an inclusive relative epsilon of 1%, 2.0 != 2.02 is considered equal, while 3.0 != 3.05 is still not equal:

val options = DiffOptions.default
  .withComparator(DiffComparators.epsilon(0.01).asRelative().asInclusive(), DoubleType)
left.diff(right, options, "id").show()
diff id left_value right_value
N 1 1.0 1.0
N 2 2.0 2.02
C 3 3.0 3.05

The user can provide custom comparator implementations by implementing scala.math.Equiv[T] or uk.co.gresearch.spark.diff.DiffComparator:

val intEquiv: Equiv[Int] = (x: Int, y: Int) => x == null && y == null || x != null && y != null && x.equals(y)
val anyEquiv: Equiv[Any] = (x: Any, y: Any) => x == null && y == null || x != null && y != null && x.equals(y)

val comparator: DiffComparator = (left: Column, right: Column) => left <=> right

import spark.implicits._

val options = DiffOptions.default
  .withComparator(intEquiv)
  .withComparator(anyEquiv, LongType, DoubleType)
  .withComparator(anyEquiv, "column1", "column2")

  .withComparator(comparator, StringType, FloatType)
  .withComparator(comparator, "column3", "column4")

Methods (Scala)

All Scala methods come in two variants, one without (as shown below) and one with an options: DiffOptions argument.

  • def diff(other: Dataset[T], idColumns: String*): DataFrame

  • def diff[U](other: Dataset[U], idColumns: Seq[String], ignoreColumns: Seq[String]): DataFrame

  • def diffAs[V](other: Dataset[T], idColumns: String*)(implicit diffEncoder: Encoder[V]): Dataset[V]

  • def diffAs[U, V](other: Dataset[U], idColumns: Seq[String], ignoreColumns: Seq[String])(implicit diffEncoder: Encoder[V]): Dataset[V]

  • def diffAs[V](other: Dataset[T], diffEncoder: Encoder[U], idColumns: String*): Dataset[V]

  • def diffAs[U, V](other: Dataset[U], diffEncoder: Encoder[U], idColumns: Seq[String], ignoreColumns: Seq[String]): Dataset[V]

  • def diffWith(other: Dataset[T], idColumns: String*): Dataset[(String, T, T)]

  • def diffWith[U](other: Dataset[U], idColumns: Seq[String], ignoreColumns: Seq[String]): Dataset[(String, T, U)]

Methods (Java)

  • Dataset<Row> Diff.of[T](Dataset<T> left, Dataset<T> right, String... idColumns)

  • Dataset<Row> Diff.of[T, U](Dataset<T> left, Dataset<U> right, List<String> idColumns, List<String> ignoreColumns)

  • Dataset<V> Diff.ofAs[T, V](Dataset<T> left, Dataset<T> right, Encoder<V> diffEncoder, String... idColumns)

  • Dataset<V> Diff.ofAs[T, U, V](Dataset<T> left, Dataset<U> right, Encoder<V> diffEncoder, List<String> idColumns, List<String> ignoreColumns)

  • Dataset<Tuple3<String, T, T>> Diff.ofWith[T](Dataset<T> left, Dataset<T> right, String... idColumns)

  • Dataset<Tuple3<String, T, U>> Diff.ofWith[T](Dataset<T> left, Dataset<U> right, List<String> idColumns, List<String> ignoreColumns)

Given a DiffOptions, a customized Differ can be instantiated as Differ differ = new Differ(options):

  • Dataset<Row> Differ.diff[T](Dataset<T> left, Dataset<T> right, String... idColumns)

  • Dataset<Row> Differ.diff[T, U](Dataset<T> left, Dataset<U> right, List<String> idColumns, List<String> ignoreColumns)

  • Dataset<U> Differ.diffAs[T, V](Dataset<T> left, Dataset<T> right, Encoder<V> diffEncoder, String... idColumns)

  • Dataset<U> Differ.diffAs[T, U, V](Dataset<T> left, Dataset<U> right, Encoder<V> diffEncoder, List<String> idColumns, List<String> ignoreColumns)

  • Dataset<Row> Differ.diffWith[T](Dataset<T> left, Dataset<T> right, String... idColumns)

  • Dataset<Row> Differ.diffWith[T, U](Dataset<T> left, Dataset<U> right, List<String> idColumns, List<String> ignoreColumns)

Methods (Python)

All Python methods come in two variants, one without (as shown below) and one with an options: DiffOptions argument. The latter variant is prefixed with _with_options.

  • def diff(self: DataFrame, other: DataFrame, *id_columns: str) -> DataFrame
  • def diff(self: DataFrame, other: DataFrame, id_columns: List[str], ignore_columns: List[str]) -> DataFrame
  • def diffwith(self: DataFrame, other: DataFrame, *id_columns: str) -> DataFrame:
  • def diffwith(self: DataFrame, other: DataFrame, id_columns: List[str], ignore_columns: List[str]) -> DataFrame

Diff Spark application

There is also a Spark application that can be used to create a diff DataFrame. The application reads two DataFrames left and right from files or tables, executes the diff transformation and writes the result DataFrame to a file or table. The Diff app can be run via spark-submit:

# Scala 2.12
spark-submit --packages com.github.scopt:scopt_2.12:4.1.0 spark-extension_2.12-2.7.0-3.4.jar --help

# Scala 2.13
spark-submit --packages com.github.scopt:scopt_2.13:4.1.0 spark-extension_2.13-2.7.0-3.4.jar --help
Spark Diff app (2.10.0-3.4)

Usage: spark-extension_2.13-2.10.0-3.4.jar [options] left right diff

  left                     file path (requires format option) or table name to read left dataframe
  right                    file path (requires format option) or table name to read right dataframe
  diff                     file path (requires format option) or table name to write diff dataframe

Examples:

  - Diff CSV files 'left.csv' and 'right.csv' and write result into CSV file 'diff.csv':
    spark-submit --packages com.github.scopt:scopt_2.13:4.1.0 spark-extension_2.13-2.10.0-3.4.jar --format csv left.csv right.csv diff.csv

  - Diff CSV file 'left.csv' with Parquet file 'right.parquet' with id column 'id', and write result into Hive table 'diff':
    spark-submit --packages com.github.scopt:scopt_2.13:4.1.0 spark-extension_2.13-2.10.0-3.4.jar --left-format csv --right-format parquet --hive --id id left.csv right.parquet diff

Spark session
  --master <master>        Spark master (local, yarn, ...), not needed with spark-submit
  --app-name <app-name>    Spark application name
  --hive                   enable Hive support to read from and write to Hive tables

Input and output
  -f, --format <format>    input and output file format (csv, json, parquet, ...)
  --left-format <format>   left input file format (csv, json, parquet, ...)
  --right-format <format>  right input file format (csv, json, parquet, ...)
  --output-format <formt>  output file format (csv, json, parquet, ...)

  -s, --schema <schema>    input schema
  --left-schema <schema>   left input schema
  --right-schema <schema>  right input schema

  --left-option:key=val    left input option
  --right-option:key=val   right input option
  --output-option:key=val  output option

  --id <name>              id column name
  --ignore <name>          ignore column name
  --save-mode <save-mode>  save mode for writing output (Append, Overwrite, ErrorIfExists, Ignore, default ErrorIfExists)
  --filter <filter>        Filters for rows with these diff actions, with default diffing options use 'N', 'I', 'D', or 'C' (see 'Diffing options' section)
  --statistics             Only output statistics on how many rows exist per diff action (see 'Diffing options' section)

Diffing options
  --diff-column <name>     column name for diff column (default 'diff')
  --left-prefix <prefix>   prefix for left column names (default 'left')
  --right-prefix <prefix>  prefix for right column names (default 'right')
  --insert-value <value>   value for insertion (default 'I')
  --change-value <value>   value for change (default 'C')
  --delete-value <value>   value for deletion (default 'D')
  --no-change-value <val>  value for no change (default 'N')
  --change-column <name>   column name for change column (default is no such column)
  --diff-mode <mode>       diff mode (ColumnByColumn, SideBySide, LeftSide, RightSide, default ColumnByColumn)
  --sparse                 enable sparse diff

General
  --help                   prints this usage text

Examples

Diff CSV files left.csv and right.csv and write result into CSV file diff.csv:

spark-submit --packages com.github.scopt:scopt_2.13:4.1.0 spark-extension_2.13-2.7.0-3.4.jar --format csv left.csv right.csv diff.csv

Diff CSV file left.csv with Parquet file right.parquet with id column id, and write result into Hive table diff:

spark-submit --packages com.github.scopt:scopt_2.13:4.1.0 spark-extension_2.13-2.7.0-3.4.jar --left-format csv --right-format parquet --hive --id id left.csv right.parquet diff