-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine_patch.py
executable file
·429 lines (372 loc) · 17.9 KB
/
engine_patch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import math
import sys
from typing import Iterable, Optional
from timm.utils.model import unwrap_model
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import Mixup
from timm.utils import accuracy, ModelEma
from lib import utils
import random
import time
import utils as myutils
from sklearn.metrics import confusion_matrix
import seaborn as sn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torchattacks
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
def sample_configs(choices, is_visual_prompt_tuning=False,is_adapter=False,is_LoRA=False,is_prefix=False):
config = {}
depth = choices['depth']
if is_visual_prompt_tuning == False and is_adapter == False and is_LoRA == False and is_prefix==False:
visual_prompt_depth = random.choice(choices['visual_prompt_depth'])
lora_depth = random.choice(choices['lora_depth'])
adapter_depth = random.choice(choices['adapter_depth'])
prefix_depth = random.choice(choices['prefix_depth'])
config['visual_prompt_dim'] = [random.choice(choices['visual_prompt_dim']) for _ in range(visual_prompt_depth)] + [0] * (depth - visual_prompt_depth)
config['lora_dim'] = [random.choice(choices['lora_dim']) for _ in range(lora_depth)] + [0] * (depth - lora_depth)
config['adapter_dim'] = [random.choice(choices['adapter_dim']) for _ in range(adapter_depth)] + [0] * (depth - adapter_depth)
config['prefix_dim'] = [random.choice(choices['prefix_dim']) for _ in range(prefix_depth)] + [0] * (depth - prefix_depth)
else:
if is_visual_prompt_tuning:
config['visual_prompt_dim'] = [choices['super_prompt_tuning_dim']] * (depth)
else:
config['visual_prompt_dim'] = [0] * (depth)
if is_adapter:
config['adapter_dim'] = [choices['super_adapter_dim']] * (depth)
else:
config['adapter_dim'] = [0] * (depth)
if is_LoRA:
config['lora_dim'] = [choices['super_LoRA_dim']] * (depth)
else:
config['lora_dim'] = [0] * (depth)
if is_prefix:
config['prefix_dim'] = [choices['super_prefix_dim']] * (depth)
else:
config['prefix_dim'] = [0] * (depth)
return config
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None,
amp: bool = True, teacher_model: torch.nn.Module = None,
teach_loss: torch.nn.Module = None, choices=None, mode='super', retrain_config=None,is_visual_prompt_tuning=False,is_adapter=False,is_LoRA=False,is_prefix=False, classes=100, gen_model=None, cf_matrix=None, eps=0.01, args=None, pre_soft_mat=None):
model.train()
criterion.train()
# set random seed
random.seed(epoch)
y_out = []
y_pred = []
y_true = []
eps = eps / 255
alpha = eps * 2 /255
steps = 1
atk = torchattacks.PGD(model, eps=eps, alpha=alpha, steps=1)
atk.set_normalization_used(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
if mode == 'retrain':
config = retrain_config
model_module = unwrap_model(model)
print(config)
model_module.set_sample_config(config=config)
print(model_module.get_sampled_params_numel(config))
softmax = nn.Softmax()
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
real_label = targets.clone()
if args.switch_bn:
myutils.change_bn(model, 0)
# freeze_norm(model)
# sample random config
if mode == 'baseline':
config = sample_configs(choices=choices,is_visual_prompt_tuning=is_visual_prompt_tuning,is_adapter=is_adapter,is_LoRA=is_LoRA,is_prefix=is_prefix)
# print("current iter config: {}".format(config))
model_module = unwrap_model(model)
model_module.set_sample_config(config=config)
gen_model_module = unwrap_model(gen_model)
gen_model_module.set_sample_config(config=config)
elif mode == 'super':
# sample
config = sample_configs(choices=choices,is_visual_prompt_tuning=is_visual_prompt_tuning,is_adapter=is_adapter,is_LoRA=is_LoRA,is_prefix=is_prefix)
# print("current iter config: {}".format(config))
model_module = unwrap_model(model)
model_module.set_sample_config(config=config)
gen_model_module = unwrap_model(gen_model)
gen_model_module.set_sample_config(config=config)
elif mode == 'retrain':
config = retrain_config
model_module = unwrap_model(model)
model_module.set_sample_config(config=config)
if mixup_fn is not None:
copy_samples, copy_targets = samples.clone(), targets.clone()
copy_targets = torch.empty((targets.shape[0], classes)).fill_(0.1).cuda()
attack_label = copy_targets.clone()
for i in range(targets.shape[0]):
which_classes = targets[i]
copy_targets[i][which_classes] = 1.0
if args.use_pre_soft and pre_soft_mat is not None:
new_label = softmax(pre_soft_mat[which_classes])
attack_label[i] = new_label
if samples.shape[0] % 2 == 0:
samples, targets = mixup_fn(samples, targets)
else:
targets = copy_targets
if amp:
with torch.cuda.amp.autocast():
if teacher_model:
with torch.no_grad():
teach_output = teacher_model(samples)
_, teacher_label = teach_output.topk(1, 1, True, True)
outputs = model(samples)
loss = 1/2 * criterion(outputs, targets) + 1/2 * teach_loss(outputs, teacher_label.squeeze())
else:
if args.patch_fool:
outputs, attn = model(samples)
else:
outputs = model(samples)
loss = criterion(outputs, targets)
else:
if args.patch_fool:
outputs, attn = model(samples)
else:
outputs = model(samples)
if teacher_model:
with torch.no_grad():
[teach_output, teacher_attn] = teacher_model(samples)
else:
if args.transmix:
if isinstance(targets, tuple): # target is tuple of (target, y1, y2, lam) when switch to cutmix
last_attn = torch.mean(attn[-1].detach()[:, :, 0, 1:], dim=1)
targets = mixup_fn.transmix_label(targets, last_attn, samples.shape)
loss = criterion(outputs, targets)
loss_value = loss.item()
y_out.extend(outputs.detach().cpu().numpy())
outputs = (torch.max(torch.exp(outputs), 1)[1]).data.cpu().numpy()
y_pred.extend(outputs) # Save Prediction
labels = real_label.detach().cpu().numpy()
y_true.extend(labels) # Save Truth
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
if amp:
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order)
else:
loss.backward()
optimizer.step()
torch.cuda.empty_cache()
# unfreeze_norm(model)
# Adv images
if epoch > args.start_adv:
if args.switch_bn:
myutils.change_bn(model, 1)
if cf_matrix is not None:
cf_matrix = cf_matrix.astype(float)
for which_class, cf_label in enumerate(cf_matrix):
cf_label[which_class] = 0
# cf_label.astype(float)
label_sum = cf_label.sum()
if label_sum > 0:
cf_matrix[which_class] = cf_label / float(label_sum)
new_labels = torch.clone(targets)
for count, each_label in enumerate(new_labels):
which_class = each_label.argmax()
if cf_matrix[which_class].sum() != 0:
new_labels[count] = torch.from_numpy(cf_matrix[which_class])
adv_images = atk(samples, new_labels)
outputs = model(adv_images)
label_left = copy_targets
elif args.patch_fool:
t_attn = torch.nn.functional.normalize(teacher_attn[args.atten_select].mean(dim=1))
s_attn = torch.nn.functional.normalize(attn[args.atten_select].mean(dim=1))
t_attn = t_attn.mean(dim=-2)[:, 1:]
s_attn = s_attn.mean(dim=-2)[:, 1:]
if s_attn.shape[1] > t_attn.shape[1]:
s_attn = s_attn[...,0: t_attn.shape[1]]
dist_attn = t_attn - s_attn
my_index = dist_attn.argsort(descending=True)[:, :args.num_patch]
dist = torch.max(torch.abs(dist_attn))
if dist > 0.7:
adv_images = myutils.patch_fool_fixed(model, copy_samples, attack_label, my_index, args)
else:
if args.use_pre_soft:
adv_images = myutils.patch_fool(model, copy_samples, attack_label, args)
else:
adv_images = myutils.patch_fool(model, copy_samples, copy_targets, args)
outputs, attn = model(adv_images)
label_left = copy_targets
else:
adv_images = atk(copy_samples, copy_targets)
outputs = model(adv_images)
label_left = copy_targets
loss_syn = criterion(outputs, label_left)
loss_syn_value = loss_syn.item()
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
if amp:
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss_scaler(loss_syn, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order)
else:
loss_syn.backward()
optimizer.step()
metric_logger.update(loss_syn=loss_syn_value)
torch.cuda.synchronize()
if model_ema is not None:
model_ema.update(model)
metric_logger.update(loss=loss_value)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
true = np.array(y_true)
pred = np.array(y_pred)
# true = np.argmax(true, axis=1)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}, y_pred, y_true, y_out
def distance_wb(gwr, gws):
shape = gwr.shape
if len(shape) == 4: # conv, out*in*h*w
gwr = gwr.reshape(shape[0], shape[1] * shape[2] * shape[3])
gws = gws.reshape(shape[0], shape[1] * shape[2] * shape[3])
elif len(shape) == 3: # layernorm, C*h*w
gwr = gwr.reshape(shape[0], shape[1] * shape[2])
gws = gws.reshape(shape[0], shape[1] * shape[2])
elif len(shape) == 2: # linear, out*in
tmp = 'do nothing'
elif len(shape) == 1: # batchnorm/instancenorm, C; groupnorm x, bias
gwr = gwr.reshape(1, shape[0])
gws = gws.reshape(1, shape[0])
return torch.tensor(0, dtype=torch.float, device=gwr.device)
dis_weight = torch.sum(1 - torch.sum(gwr * gws, dim=-1) / (torch.norm(gwr, dim=-1) * torch.norm(gws, dim=-1) + 0.000001))
dis = dis_weight
return dis
def match_loss(gw_syn, gw_real, device, dis_metric):
dis = torch.tensor(0.0).to(device)
if dis_metric == 'wb':
for ig in range(len(gw_real)):
gwr = gw_real[ig]
gws = gw_syn[ig]
dis += distance_wb(gwr, gws)
elif dis_metric == 'mse':
gw_real_vec = []
gw_syn_vec = []
for ig in range(len(gw_real)):
gw_real_vec.append(gw_real[ig].reshape((-1)))
gw_syn_vec.append(gw_syn[ig].reshape((-1)))
gw_real_vec = torch.cat(gw_real_vec, dim=0)
gw_syn_vec = torch.cat(gw_syn_vec, dim=0)
dis = torch.sum((gw_syn_vec - gw_real_vec)**2)
elif dis_metric == 'cos':
gw_real_vec = []
gw_syn_vec = []
for ig in range(len(gw_real)):
gw_real_vec.append(gw_real[ig].reshape((-1)))
gw_syn_vec.append(gw_syn[ig].reshape((-1)))
gw_real_vec = torch.cat(gw_real_vec, dim=0)
gw_syn_vec = torch.cat(gw_syn_vec, dim=0)
dis = 1 - torch.sum(gw_real_vec * gw_syn_vec, dim=-1) / (torch.norm(gw_real_vec, dim=-1) * torch.norm(gw_syn_vec, dim=-1) + 0.000001)
else:
exit('unknown distance function: %s'% dis_metric)
return dis
def freeze_norm(model):
for name,param in model.named_parameters():
if 'norm' in name:
param.requires_grad = False
def unfreeze_norm(model):
for name,param in model.named_parameters():
if 'norm' in name:
param.requires_grad = True
def syn_image(samples, labels, model, device):
labels = labels.max(1)[1]
batch_size = samples.shape[0]
image_left = samples[0: batch_size//2, ...]
image_right = samples[batch_size//2: , ...]
label_left = labels[0: batch_size//2, ...]
label_right = labels[batch_size//2: , ...]
net_parameters = []
for param in list(model.parameters()):
if param.requires_grad:
net_parameters.append(param)
# import ipdb
# ipdb.set_trace()
image_syn = nn.Parameter(image_left.clone(), requires_grad=True)
optimizer_img = torch.optim.SGD([image_syn, ], lr=0.1, momentum=0.5) # optimizer_img for synthetic data
optimizer_img.zero_grad()
criterion = nn.CrossEntropyLoss().to(device)
# loss = torch.tensor(0.).to(device)
for i in range(1):
output_left = model(image_syn)
loss_left = criterion(output_left, label_left)
wg_left = torch.autograd.grad(loss_left, net_parameters, create_graph=True)
output_right = model(image_right)
loss_right = criterion(output_right, label_right)
wg_right = torch.autograd.grad(loss_right, net_parameters)
wg_right = list((_.detach().clone() for _ in wg_right))
# print(wg_right.shape)
loss = match_loss(wg_left, wg_right, device, 'wb')
optimizer_img.zero_grad()
loss.backward()
optimizer_img.step()
diff = (image_syn.data - image_left.data)
return image_syn.data
@torch.no_grad()
def evaluate(data_loader, model, device, amp=True, choices=None, mode='super', retrain_config=None,is_visual_prompt_tuning=False,is_adapter=False,is_LoRA=False,is_prefix=False, patch_fool=False):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
if mode == 'super':
config = sample_configs(choices=choices,is_visual_prompt_tuning=is_visual_prompt_tuning,is_adapter=is_adapter,is_LoRA=is_LoRA,is_prefix=False)
model_module = unwrap_model(model)
model_module.set_sample_config(config=config)
else:
config = retrain_config
model_module = unwrap_model(model)
model_module.set_sample_config(config=config)
print("sampled model config: {}".format(config))
parameters = model_module.get_sampled_params_numel(config)
print("sampled model parameters: {}".format(parameters))
y_out = []
y_pred = []
y_true = []
for images, target in metric_logger.log_every(data_loader, 10, header):
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
myutils.change_bn(model, 0)
if amp:
with torch.cuda.amp.autocast():
output = model(images)
loss = criterion(output, target)
else:
if patch_fool:
output, attn = model(images)
else:
output = model(images)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
y_out.extend(output.cpu().numpy())
output = (torch.max(torch.exp(output), 1)[1]).data.cpu().numpy()
y_pred.extend(output) # Save Prediction
labels = target.data.cpu().numpy()
y_true.extend(labels) # Save Truth
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}, y_pred, y_true, y_out