forked from DeltaVML/imaginarium
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
78 lines (66 loc) · 2.23 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import asyncio
import csv
import weave
from weave import Dataset
from pathlib import Path
import json
import sys
# TODO: Maybe use this for finetuning
async def flowbite():
weave.init("openui-test-20")
data_dir = Path(__file__).parent / "components"
ds = []
for file in sorted(data_dir.glob("*.json")):
with open(file, "r") as f:
data = json.load(f)
abort = False
category = file.name.split(".")[0]
if category == "avatar":
print("Skipped ", category)
continue
for row in data:
if not row.get("names"):
abort = True
print("Aborting!")
break
source = row["name"].lower().replace(" ", "-")
for i, name in enumerate(row["names"]):
ds.append(
{
"name": name,
# hack for weirdly named folders.
"id": f"flowbite/{category.replace(' ', '-')}/{source}/{i}",
"emoji": row["emojis"][i],
"prompt": row["prompts"][i],
"desktop_img": f"{category}/{source}.combined.png",
"mobile_img": f"{category}/{source}.combined.mobile.png",
}
)
if abort:
break
dataset = Dataset(ds)
print("Created dataset of ", len(ds))
dataset_ref = weave.publish(dataset, "flowbite")
print("Published dataset:", dataset_ref)
async def publish(model):
weave.init("openui-test-20")
ds_dir = Path(__file__).parent / "datasets"
if model:
with open(ds_dir / f"{model}.json", "r") as f:
ds = json.load(f)
else:
ds = []
with open(ds_dir / "eval.csv", "r") as f:
reader = csv.DictReader(f)
for row in reader:
ds.append(row)
dataset = weaveflow.Dataset(ds)
print("Created dataset of ", len(ds))
dataset_ref = weave.publish(dataset, model.replace(":", "-") if model else "eval")
print("Published dataset:", dataset_ref)
if __name__ == "__main__":
if len(sys.argv) > 1:
model = sys.argv[1]
else:
model = None
asyncio.run(publish(model))