DATA SCIENCE PROJECT. CONTENTS. 1. Python Basics: Data Types, Functions,Objects and Classes. 2. Python Basics-Libraries: Panda, Numpy. 3. File Editing: WRITING FILES WITH WRITE, READING FILES WITH READ,APPENDING FILES,COPY A FILE. 4. Web-Scrapping: REQUEST,BEAUTIFUL SOUP,JSON library. 5. Extracting and Visualizing Stock Data: REQUEST,BEAUTIFUL SOUP,yfinance. 6. Data Wrangling: pandas,numpy,matplotlib. 7. Exploratory Data Analysis: correlation,seaborn. 8. Model Development: Pandas,Numpy, Pipeline,Linear and Nonlinear Regression. 9. Model Evaluation And Refinement: Pandas,Numpy,Scikitlearn, Data Transformation, Data spliting, Cross Validation, Rigde Regression, GridSearch. 10. K-Nearest Neigbour: Pandas,Numpy,Scikitlearn, confusion matrix, Jaccard index, F1-score. 11. Decision Tree: Pandas,Numpy,Scikitlearn, confusion matrix, Jaccard index, F1-score,descision tree classifier. 12. Taxi Tip Prediction: Pandas,Numpy,Scikitlearn, Decsision Tree Regression, logistic regression, Random Forest. 13. House Sales In King County: Pandas,Numpy,Scikitlearn, Data transformation, Linear Regression, Rigde Regression, Grid Search.