-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcodespace.Rmd
66 lines (51 loc) · 6.06 KB
/
codespace.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
title: "Codespace"
description: |
Welcome to the Codespace for GEOG 279! Here you'll find code snippets, resources, and examples to help you with the course assignments.
output:
distill::distill_article:
toc: true # Enable table of contents
toc_depth: 2 # Set the depth of the TOC (levels 1 and 2 headers)
---
# Code Resources and Documentation
<details style="border: 1px solid #ddd; padding: 10px; border-radius: 5px;">
<summary><strong><span style="font-family: 'serif'; font-size: 18px; color: #2c3e50;">Click to expand the table</span></strong></summary>
<div style="padding: 15px; font-family: 'serif'; font-size: 16px; color: #34495e;">
| **Topic** | **Description** | **Link** |
|------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------|
| **Data Analysis in Python (Pandas)** | Pandas official tutorials and documentation | [Pandas Documentation](https://pandas.pydata.org/pandas-docs/stable/getting_started/intro_tutorials/index.html) |
| | Pandas for Data Analysis (Kaggle) | [Kaggle Pandas Tutorial](https://www.kaggle.com/learn/pandas) |
| | Data manipulation in Google Colab | [Pandas Example Notebook](https://colab.research.google.com/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/03.01-Introducing-Pandas-Objects.ipynb) |
| **Data Visualization** | Matplotlib Pyplot Tutorial | [Matplotlib Pyplot Tutorial](https://matplotlib.org/stable/tutorials/introductory/pyplot.html) |
| | Seaborn Visualization Library | [Seaborn Tutorial](https://seaborn.pydata.org/tutorial.html) |
| | Visualization examples in Google Colab | [Visualization Example Notebook](https://colab.research.google.com/github/walkerke/geog30323/blob/master/08-data-visualization.ipynb) |
| **Geospatial Analysis** | Geopandas Introduction and Documentation | [Geopandas Documentation](https://geopandas.org/en/stable/getting_started/introduction.html) |
| | Spatial Operations with Geopandas | [Geospatial Operations Notebook](https://geopandas.org/en/stable/gallery/plotting_basemap_background.html) |
| | Interactive Mapping with Folium | [Folium Mapping Tutorial](https://python-visualization.github.io/folium/quickstart.html) |
| | Folium Example | [Folium Example](https://python-visualization.github.io/folium/latest/getting_started.html) |
| **Remote Sensing** | Raster Data Analysis with Rasterio | [Rasterio Documentation](https://rasterio.readthedocs.io/en/latest/quickstart.html) |
| **Machine Learning** | Introduction to Scikit-Learn | [Scikit-Learn User Guide](https://scikit-learn.org/stable/user_guide.html) |
| | Scikit-Learn Example Notebooks | [Scikit-Learn Example Notebooks](https://scikit-learn.org/stable/auto_examples/index.html) |
| **R Programming** | R for Data Science Book | [R for Data Science](https://r4ds.had.co.nz/)
| | Applied Causal Analysis with R (Book) | [Applied Causal Analysis](https://bookdown.org/paul/applied-causal-analysis/) |
| | Data Visualization with ggplot2 | [ggplot2 Documentation](https://ggplot2.tidyverse.org/) |
| | Spatial Data Analysis with the sf Package | [sf Package Tutorial](https://r-spatial.github.io/sf/articles/sf1.html) |
| | R Markdown Tutorial | [R Markdown Guide](https://rmarkdown.rstudio.com/lesson-1.html) |
| **GitHub Resources** | GitHub Guides and Documentation | [GitHub Docs](https://docs.github.com/en) |
| | Creating a Repository | [GitHub Repo Creation](https://docs.github.com/en/get-started/quickstart/create-a-repo) |
| **Google Colab Resources** | Introduction to Google Colab | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/notebooks/intro.ipynb) |
| | Connecting to Google Drive | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/notebooks/io.ipynb) |
</div>
</details>
# Power Analysis
<details style="border: 1px solid #ddd; padding: 10px; border-radius: 5px;">
<summary><strong><span style="font-family: 'serif'; font-size: 18px; color: #2c3e50;">Click to expand Power Analysis resources</span></strong></summary>
<div style="padding: 15px; font-family: 'serif'; font-size: 16px; color: #34495e;">
In this section, you will find resources for conducting power analysis.
<p>Click the badge below to open the notebook in Google Colab and explore the example on power analysis with spatial correlation.</p>
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/14XEEpZW75Rc3JfimJkpxNGN0gKFJkoBW?usp=sharing)
<h3> Additional Power Analysis Resources</h3>
- [Power Calculations (J-PAL)](https://www.povertyactionlab.org/resource/power-calculations)
- [Optimal Design with Empirical Information (OD) by William T. Grant Foundation](https://wtgrantfoundation.org/optimal-design-with-empirical-information-od)
</div>
</details>