-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathglmnet_fast.m
414 lines (390 loc) · 13 KB
/
glmnet_fast.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
function fit = glmnet_fast(x, y, options)
% Speed up version by Zhe Zhu (10/28/2014)
%--------------------------------------------------------------------------
% glmnet.m: fit an elasticnet model path
%--------------------------------------------------------------------------
%
% DESCRIPTION:
% Fit a regularization path for the elasticnet at a grid of values for
% the regularization parameter lambda. Can deal with all shapes of data.
% Fits linear, logistic and multinomial regression models.
%
% USAGE:
% fit = glmnet(x, y)
% fit = glmnet(x, y, family, options)
%
% EXTERNAL FUNCTIONS:
% options = glmnetSet; provided with glmnet.m
%
% INPUT ARGUMENTS:
% x Input matrix, of dimension nobs x nvars; each row is an
% observation vector. Currently sparse format is NOT supported.
% y Response variable. Quantitative for family =
% 'gaussian'. For family = 'binomial' should be either a vector
% of two levels, or a two-column matrix of counts or
% proportions. For family = 'multinomial', can be either a
% vector of nc>=2 levels, or a matrix with nc columns of counts
% or proportions.
% family Reponse type. (See above). Default is 'gaussian'.
% options A structure that may be set and altered by glmnetSet (type
% help glmnetSet).
%
% OUTPUT ARGUMENTS:
% fit A structure.
% fit.a0 Intercept sequence of length length(fit.lambda).
% fit.beta For "elnet" and "lognet" models, a nvars x length(lambda)
% matrix of coefficients. For "multnet", a list of nc such
% matrices, one for each class.
% fit.lambda The actual sequence of lambda values used.
% fit.dev The fraction of (null) deviance explained (for "elnet", this
% is the R-square).
% fit.nulldev Null deviance (per observation).
% fit.df The number of nonzero coefficients for each value of lambda.
% For "multnet", this is the number of variables with a nonzero
% coefficient for any class.
% fit.dfmat For "multnet" only. A matrix consisting of the number of
% nonzero coefficients per class.
% fit.dim Dimension of coefficient matrix (ices).
% fit.npasses Total passes over the data summed over all lambda values.
% fit.jerr Error flag, for warnings and errors (largely for internal
% debugging).
% fit.class Type of regression - internal usage.
%
% DETAILS:
% The sequence of models implied by lambda is fit by coordinate descent.
% For family = 'gaussian' this is the lasso sequence if alpha = 1, else
% it is the elasticnet sequence. For family = 'binomial' or family =
% "multinomial", this is a lasso or elasticnet regularization path for
% fitting the linear logistic or multinomial logistic regression paths.
% Sometimes the sequence is truncated before options.nlambda values of
% lambda have been used, because of instabilities in the logistic or
% multinomial models near a saturated fit. glmnet(..., family =
% 'binomial') fits a traditional logistic regression model for the
% log-odds. glmnet(..., family = 'multinomial') fits a symmetric
% multinomial model, where each class is represented by a linear model
% (on the log-scale). The penalties take care of redundancies. A
% two-class "multinomial" model will produce the same fit as the
% corresponding "binomial" model, except the pair of coefficient
% matrices will be equal in magnitude and opposite in sign, and half the
% "binomial" values. Note that the objective function for
% "gaussian" is
% 1 / (2 * nobs) RSS + lambda * penalty
% , and for the logistic models it is
% 1 / nobs - loglik + lambda * penalty
%
% LICENSE: GPL-2
%
% DATE: 14 Jul 2009
%
% AUTHORS:
% Algorithm was designed by Jerome Friedman, Trevor Hastie and Rob Tibshirani
% Fortran code was written by Jerome Friedman
% R wrapper (from which the MATLAB wrapper was adapted) was written by Trevor Hasite
% MATLAB wrapper was written and maintained by Hui Jiang, jiangh@stanford.edu
% Department of Statistics, Stanford University, Stanford, California, USA.
%
% REFERENCES:
% Friedman, J., Hastie, T. and Tibshirani, R. (2009)
% Regularization Paths for Generalized Linear Models via Coordinate Descent.
% Journal of Statistical Software, 33(1), 2010
%
% SEE ALSO:
% glmnetSet, glmnetPrint, glmnetPlot, glmnetPredict and glmnetCoef methods.
%
% EXAMPLES:
% x=randn(100,20);
% y=randn(100,1);
% g2=randsample(2,100,true);
% g4=randsample(4,100,true);
% fit1=glmnet(x,y);
% glmnetPrint(fit1);
% glmnetCoef(fit1,0.01) % extract coefficients at a single value of lambda
% glmnetPredict(fit1,'response',x(1:10,:),[0.01,0.005]') % make predictions
% fit2=glmnet(x,g2,'binomial');
% fit3=glmnet(x,g4,'multinomial');
%
% DEVELOPMENT:
% 14 Jul 2009: Original version of glmnet.m written.
% 26 Jan 2010: Fixed a bug in the description of y, pointed out by
% Peter Rijnbeek from Erasmus University.
% 09 Mar 2010: Fixed a bug of printing "ka = 2", pointed out by
% Ramon Casanova from Wake Forest University.
% 25 Mar 2010: Fixed a bug when p > n in multinomial fitting, pointed
% out by Gerald Quon from University of Toronto
% 25 Jul 2010: Check for input matrix format and size
% 27 Sep 2010: Fixed a bug of undefined "df" in multinomial fitting,
% pointed by Jeff Howbert from Insilicos.
% 27 Jan 2013 Faster version made especially for CCDC (Zhe Zhu)
% % Check input arguments
% if nargin < 2
% error('more input arguments needed.');
% end
%
% if nargin < 3
% family = 'gaussian';
% end
%
% if nargin < 4
% options = glmnetSet;
% end
% fixed family
% family = 'gaussian';
% fixed options
% options = glmnetSet;
% Prepare parameters
% nlam = options.nlambda;
% if (issparse(x) || issparse(y))
% error('currently sparse matrix is NOT supported.');
% end
%
% if (~isa(x,'double') || ~isa(y,'double'))
% error('only DOUBLE precision matrix is supported.');
% end
[nobs,nvars] = size(x);
% if (nobs <= 1)
% error('at least two observations should be provided.');
% end
weights = options.weights;
if isempty(weights)
weights = ones(nobs,1);
end
% maxit = options.maxit;
% if strcmp(family, 'binomial') || strcmp(family, 'multinomial')
% [noo,nc] = size(y);
% kopt = double(options.HessianExact);
% if noo ~= nobs
% error('x and y have different number of rows');
% end
% if nc == 1
% classes = unique(y);
% nc = length(classes);
% indexes = eye(nc);
% y = indexes(y,:);
% end
% if strcmp(family, 'binomial')
% if nc > 2
% error ('More than two classes; use multinomial family instead');
% end
% nc = 1; % for calling multinet
% end
% if ~isempty(weights)
% % check if any are zero
% o = weights > 0;
% if ~all(o) %subset the data
% y = y(o,:);
% x = x(o,:);
% weights = weights(o);
% nobs = sum(o);
% end
% [my,ny] = size(y);
% y = y .* repmat(weights,1,ny);
% end
% % Compute the null deviance
% prior = sum(y,1);
% sumw = sum(sum(y));
% prior = prior / sumw;
% nulldev = -2 * sum(sum(y .* (ones(nobs, 1) * log(prior)))) / sumw;
% elseif strcmp(family, 'gaussian')
% Compute the null deviance
ybar = y' * weights/ sum(weights);
nulldev = (y' - ybar).^2 * weights / sum(weights);
% if strcmp(options.type, 'covariance')
% ka = 1;
% elseif strcmp(options.type, 'naive')
% ka = 2;
% else
% error('unrecognized type');
% end
ka = 1;
% else
% error('unrecognized family');
% end
% ne = options.dfmax;
% if ne == 0
% ne = nvars + 1;
% end
ne = nvars + 1;
% nx = options.pmax;
% if nx == 0
% nx = min(ne * 1.2, nvars);
% end
nx = min(ne * 1.2, nvars);
% exclude = options.exclude;
% if ~isempty(exclude)
% exclude = unique(exclude);
% % if ~all(exclude > 0 & exclude <= nvars)
% % error('Some excluded variables out of range');
% % end
% jd = [length(exclude); exclude];
% else
% jd = 0;
% end
jd = 0;
% vp = options.penalty_factor;
% if isempty(vp)
% vp = ones(nvars,1);
% end
vp = ones(nvars,1);
isd = double(options.standardize);
thresh = options.thresh;
lambda = options.lambda;
% lambda_min = options.lambda_min;
% % if lambda_min == 0
% if nobs < nvars
% lambda_min = 5e-2;
% else
% lambda_min = 1e-4;
% end
% end
% if isempty(lambda)
% if (lambda_min >= 1)
% error('lambda_min should be less than 1');
% end
% flmin = lambda_min;
% ulam = 0;
% else
flmin = 1.0;
% if any(lambda < 0)
% error ('lambdas should be non-negative');
% end
ulam = -sort(-lambda);
nlam = length(lambda);
% end
parm = options.alpha;
% if strcmp(family, 'gaussian')
[a0,ca,ia,nin,rsq,alm,nlp,jerr] = glmnetMex(parm,x,y,jd,vp,ne,nx,nlam,flmin,ulam,thresh,isd,weights,ka);
% else
% [a0,ca,ia,nin,dev,alm,nlp,jerr] = glmnetMex(parm,x,y,jd,vp,ne,nx,nlam,flmin,ulam,thresh,isd,nc,maxit,kopt);
% end
% Prepare output
lmu = length(alm);
ninmax = max(nin);
lam = alm;
if isempty(options.lambda)
lam = fix_lam(lam); % first lambda is infinity; changed to entry point
end
% errmsg = err(jerr, maxit, nx);
% if errmsg.n == 1
% error(errmsg.msg);
% elseif errmsg.n == -1
% warning(errmsg.msg);
% end
% if strcmp(family, 'multinomial')
% beta_list = {};
% a0 = a0 - repmat(mean(a0), nc, 1);
% dfmat=a0;
% dd=[nvars, lmu];
% if ninmax > 0
% ca = reshape(ca, nx, nc, lmu);
% ca = ca(1:ninmax,:,:);
% ja = ia(1:ninmax);
% [ja1,oja] = sort(ja);
% df = any(abs(ca) > 0, 2);
% df = sum(df, 1);
% df = df(:);
% for k=1:nc
% ca1 = reshape(ca(:,k,:), ninmax, lmu);
% cak = ca1(oja,:);
% dfmat(k,:) = sum(sum(abs(cak) > 0));
% beta = zeros(nvars, lmu);
% beta(ja1,:) = cak;
% beta_list{k} = beta;
% end
% else
% for k = 1:nc
% dfmat(k,:) = zeros(1,lmu);
% beta_list{k} = zeros(nvars, lmu);
% end
% df = zeros(1,lmu);
% end
% fit.a0 = a0;
% fit.beta = beta_list;
% fit.dev = dev;
% fit.nulldev = nulldev;
% fit.dfmat = dfmat;
% fit.df = df';
% fit.lambda = lam;
% fit.npasses = nlp;
% fit.jerr = jerr;
% fit.dim = dd;
% fit.class = 'multnet';
% else
dd=[nvars, lmu];
if ninmax > 0
ca = ca(1:ninmax,:);
df = sum(abs(ca) > 0, 1);
ja = ia(1:ninmax);
[ja1,oja] = sort(ja);
beta = zeros(nvars, lmu);
beta (ja1, :) = ca(oja,:);
else
beta = zeros(nvars,lmu);
df = zeros(1,lmu);
end
% if strcmp(family, 'binomial')
% a0 = -a0;
% fit.a0 = a0;
% fit.beta = -beta; %sign flips make 2 arget class
% fit.dev = dev;
% fit.nulldev = nulldev;
% fit.df = df';
% fit.lambda = lam;
% fit.npasses = nlp;
% fit.jerr = jerr;
% fit.dim = dd;
% fit.class = 'lognet';
% else
fit.a0 = a0;
fit.beta = beta;
fit.dev = rsq;
fit.nulldev = nulldev;
fit.df = df';
fit.lambda = lam;
fit.npasses = nlp;
fit.jerr = jerr;
fit.dim = dd;
fit.class = 'elnet';
% end
% end
%------------------------------------------------------------------
% End function glmnet
%------------------------------------------------------------------
function new_lam = fix_lam(lam)
new_lam = lam;
llam=log(lam);
new_lam(1)=exp(2*llam(2)-llam(3));
%------------------------------------------------------------------
% End private function fix_lam
%------------------------------------------------------------------
% function output = err(n,maxit,pmax)
%
% if n==0
% output.n=0;
% output.msg='';
% elseif n>0 %fatal error
% if n<7777
% msg='Memory allocation error; contact package maintainer';
% elseif n==7777
% msg='All used predictors have zero variance';
% elseif (8000<n) && (n<9000)
% msg=sprintf('Null probability for class %d < 1.0e-5', n-8000);
% elseif (9000<n) && (n<10000)
% msg=sprintf('Null probability for class %d > 1.0 - 1.0e-5', n-9000);
% elseif n==10000
% msg='All penalty factors are <= 0';
% end
% output.n=1;
% output.msg=['in glmnet fortran code - %s',msg];
% elseif n<0 %non fatal error
% if n > -10000
% msg=sprintf('Convergence for %dth lambda value not reached after maxit=%d iterations; solutions for larger lambdas returned', -n, maxit);
% elseif n < -10000
% msg=sprintf('Number of nonzero coefficients along the path exceeds pmax=%d at %dth lambda value; solutions for larger lambdas returned', pmax, -n-10000);
% end
% output.n=-1;
% output.msg=['from glmnet fortran code - ',msg];
% end
%
% %------------------------------------------------------------------
% % End private function err
% %------------------------------------------------------------------