-
Notifications
You must be signed in to change notification settings - Fork 58
/
LoadAuxiData.m
551 lines (512 loc) · 20.1 KB
/
LoadAuxiData.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
function [dem_out,slope_out,aspect_out,water_occur] = LoadAuxiData(doc_path,fname,bbox,trgt,saveas_local,varargin)
%LOADAXUIDATA Read DEM, GSWO, slope, and aspect.
%
% Syntax
%
% [dem_out,slope_out,aspect_out,water_occur] =
% LoadAuxiData(doc_path,fname,bbox,trgt,saveas_local)
%
% Description
%
% Read DEM and GSWO, and calculate Slope and Aspect data.
% It will spend about 1 min to load, mosaic DEM and GSWO, and calculate
% Slope and Aspect. If users use the online DEM, the time will depend
% on the Internet speed.
% Create a chache folder at scene directory, that will be affected by
% each others (especailly in parelel)
% User can define a DEM path. (by Shi. Jun 14, 2018)
%
% Input arguments
%
% doc_path Path of images.
% Landsat: the directory where you save the Landsat scene.
% Sentinel 2: the directory reaching to
% '~/S2*/GRANULE/S2*/IMG_DATA/'.
% fname Image name.
% bbox Boundary of image. [north, south, west, east]
% trgt The GRIDobj used as a targart, which is useful when
% projecting and mosaicing the auxi data.
% saveas_local Locally save as the auxi data or not.
% true: saveas false:do not saveas.
%
% Output arguments
%
% dem_out DEM responding to the scene.
% slope_out Slope, which will be generated if unvailable.
% aspect_out Aspect, which will be generated if unvailable.
% water_occur GSWO responding to the scene.
%
%
%
% Support the path of auxiliaray data's directory
%
% Author: Shi Qiu (shi.qiu@uconn.edu)
% Date: Jan., 25, 2022
% instant paras
% dem_path=strcat(pwd,'/AuxiData/GTOPO3010degZIP/'); % cliped by each
% 10 degrees -by- 10 degrees.
p = inputParser;
p.FunctionName = 'AuxiParameters';
addParameter(p,'parallel',0);
addParameter(p,'userdem','');
addParameter(p,'auxi','');
% request user's input
parse(p,varargin{:});
isParallel=p.Results.parallel;
userdem = p.Results.userdem; % dem path
pathauxi = p.Results.auxi;
if isempty(pathauxi)
if isdeployed % Stand-alone mode.
% m_path = ctfroot;
if ismac||isunix
% Code to run on Mac plaform
% Code to run on Linux plaform
[~, result] = system('echo $PATH');
m_path = char(regexpi(result, '(.*?):', 'tokens', 'once'));
elseif ispc
% Code to run on PC plaform
[~, result] = system('path');
m_path = char(regexpi(result, 'Path=(.*?);', 'tokens', 'once'));
clear result;
end
else % MATLAB mode.
m_path=mfilename('fullpath');
m_path(end-12:end)=[]; % remove the '/LoadAuxiData'
end
m_path = fullfile(m_path, 'AuxiData');
else
m_path = pathauxi; % direct directory
end
% test sccess assess to auxiliary data
water_path=fullfile(m_path,'GSWO150ZIP');
dem_path=fullfile(m_path,'GTOPO30ZIP');
if ~isfolder(m_path) || ~isfolder(water_path) || ~isfolder(dem_path)
fprintf('Warning: Fail to locate the auxiliary data. Please input the directory path of the auxiliary data.\n');
else
fprintf('Successully locate the auxiliary data.\n');
end
clear m_path;
% water_path=fullfile('.','AuxiData','GSWO150ZIP');
% dem_path=fullfile('.','AuxiData','GTOPO30ZIP');
% cache_path=fullfile(m_path,'Cache');
cache_path=fullfile(doc_path,'Cache');
% see the Cache is available
if ~exist(cache_path,'dir')
%have no the directory, create it here.
mkdir(cache_path);
% % cannot make it, give the results here directly.
% if ~status_mkdir
% cache_path = doc_path;
% end
end
% online
%% DEM
% Step 1. Read DEM data at the directory of scene.
% filename_dem=dir([doc_path,fname,'_DEM.tif']);
% userdem
dem_gridobj=[];
if ~isempty(userdem)&&~isempty(trgt)
% read user's DEM
userdem_gridobj = GRIDobj(userdem);
% resample to same extent.
dem_gridobj = reproject2utm(userdem_gridobj,trgt);
clear userdem_gridobj userdem;
end
% local _DEM.tif
if isempty (dem_gridobj)
filename_dem=dir(fullfile(doc_path,'L*_DEM.tif')); % upper
if ~isempty(filename_dem)
dem_gridobj = GRIDobj(fullfile(doc_path,filename_dem(1).name));
else
filename_dem=dir(fullfile(doc_path,'L*_dem.tif')); % lower
if ~isempty(filename_dem)
dem_gridobj = GRIDobj(fullfile(doc_path,filename_dem(1).name));
else
filename_dem=dir(fullfile(doc_path,'S*_DEM.tif')); % upper
if ~isempty(filename_dem)
dem_gridobj = GRIDobj(fullfile(doc_path,filename_dem(1).name));
else
filename_dem=dir(fullfile(doc_path,'S*_dem.tif')); % lower
if ~isempty(filename_dem)
dem_gridobj = GRIDobj(fullfile(doc_path,filename_dem(1).name));
else
dem_gridobj=[];
end
end
end
end
end
% dem_gridobj=[];
clear filename_dem;
% Step 2. Locally load GTOPO30 DEM (1km) or Download SRTM DEM data according to users' requirements.
if isempty (dem_gridobj)&&~isempty(trgt)
islocal=true;
if islocal
dem_data=MosaicLocalDEM(dem_path,cache_path,trgt,bbox);
% dem_data = MosaicLocalAuxiData('DEM',dem_path,trgt,bbox);
if ~isempty(dem_data)&&sum(sum(dem_data(:)))>0 % all 0 will be empty.
% sometimes there may be over water totally.
dem_gridobj = GRIDobj(trgt);
dem_gridobj.name=[fname,'_DEM'];
dem_gridobj.Z = dem_data;
% tic
% while sum(sum(isnan(dem_gridobj.Z )))>0
% dem_gridobj = inpaintnans(dem_gridobj,'fill');% imfill nan
% end
% toc
if saveas_local
GRIDobj2geotiff(dem_gridobj,fullfile(doc_path,[dem_gridobj.name,'.tif']));
end
% fprintf('GTOPO30 (1km DEM), ');
else
% fprintf('non-DEM, ');
end
clear dem_data;
% fprintf('Local GTOPO30 (1km DEM) will be used.\n');
else
demtype = 'SRTMGL3';
dem_gridobj = LoadOnlineDEM(fname,demtype,bbox,trgt);
if ~isempty(dem_gridobj)
if saveas_local
dem_gridobj.name=[fname,'_DEM'];
GRIDobj2geotiff(dem_gridobj,fullfile(doc_path,[dem_gridobj.name,'.tif']));
end
% fprintf('Online DEM (',demtype,'),\n');
else
% fprintf('non-DEM (',demtype,'), ');
end
end
elseif ~isempty (dem_gridobj)
% fprintf('DEM in the scene directory,\n');
% fprintf('The DEM in the directory of scene will be used.\n');
end
if ~isempty(dem_gridobj)
dem_out=single(dem_gridobj.Z);
else
dem_out=[];
end
% Step 3. Calculate Slope.
slope_out = LoadAuxiItem(doc_path,fname,'SLOPE');
if isempty (slope_out)
if ~isempty (dem_gridobj)
slope_gridobj=arcslope(dem_gridobj,'deg');
slope_out=single(slope_gridobj.Z);
if saveas_local
slope_gridobj.name=[fname,'_SLOPE'];
GRIDobj2geotiff(slope_gridobj,fullfile(doc_path,[slope_gridobj.name,'.tif']));
end
clear slope_gridobj;
% fprintf('SLOPE, ');
% clear slope_gridobj;
else
% fprintf('non-SLOPE, ');
end
else
% fprintf('SLOPE in the scene directory,\n');
end
% Step 4. Calculate Aspect.
aspect_out = LoadAuxiItem(doc_path,fname,'ASPECT');
if isempty (aspect_out)
if ~isempty (dem_gridobj)
aspect_gridobj = aspect(dem_gridobj);
aspect_out = single(aspect_gridobj.Z);
if saveas_local
aspect_gridobj.name=[fname,'_ASPECT'];
GRIDobj2geotiff(aspect_gridobj,fullfile(doc_path,[aspect_gridobj.name,'.tif']));
end
% fprintf('ASPECT, ');
clear aspect_gridobj;
else
% fprintf('non-ASPECT, ');
end
else
% fprintf('ASPECT in the scene directory,\n');
end
clear dem_gridobj;
%% WATER
water_occur = LoadAuxiItem(doc_path,fname,'WATER');
if isempty (water_occur)&& ~isempty(trgt)
water_occur = MosaicLocalAuxiData('WATER',water_path,cache_path,trgt,bbox);
if ~isempty(water_occur)
% fprintf('and GSWO (150m water map).\n');
% fprintf('Local GSWO (150m water map) will be used.\n');
if saveas_local
wt_gridobj = GRIDobj(trgt);
wt_gridobj.name=[fname,'_WATER'];
wt_gridobj.Z = water_occur;
GRIDobj2geotiff(wt_gridobj,fullfile(doc_path,[wt_gridobj.name,'.tif']));
clear wt_gridobj;
end
else
% fprintf('and non-GSWO.\n');
end
else
% fprintf('and GSWO in the scene directory.\n');
end
clear trgt;
if ~isempty (water_occur)
water_occur(water_occur==255)=100;% 255 is 100% ocean.
end
if ~isParallel
% remove the cache folder in the scene directory.
if exist(cache_path,'dir')
rmdir(cache_path,'s');
end
end
end
function auxi_data = LoadAuxiItem(doc_path,fname,name_match)
% LoadAuxiItem read local auxi data first.
% filename=dir([doc_path,'x*_',name_match,'.tif']);
filename=dir(fullfile(doc_path,[fname,'_',name_match,'.tif']));
if ~isempty(filename)
auxi_data=imread(fullfile(doc_path,filename(1).name));
% fprintf('Successfully load %s at %s.\n',name_match,fname);
else
auxi_data=[];
% fprintf('Fail to locally find out %s at %s.\n',name_match,fname);
end
end
function dem = LoadOnlineDEM(fname,demtype,bbox,trgt)
try
% fprintf('DEM is downloading.\n');
% cache_path=fullfile(pwd,'Cache');
tempfile_path=fullfile(cache_path,[fname, '_DEM.tif']);
dem_temp=Readopentopo('filename',tempfile_path,...
'north',bbox(1),...
'south',bbox(2),...
'west',bbox(3),...
'east',bbox(4),...
'demtype',demtype,...
'deletefile',true);
if ~isequal(dem_temp.size,trgt.size) % when DEM is NOT same as Landsat, CLIP it.
dem = reproject2utm(dem_temp,trgt,'method','nearest');
else
dem = dem_temp;
end
% fprintf('DEM was successfully downloaded at %s.\n',fname);
catch
dem=[];
% fprintf('DEM was unsuccessfully downloaded at %s.\n',fname);
end
end
function auxi_data=MosaicLocalDEM(auxi_path,cache_path,target_gridobj,bbox)
latlim=[bbox(2) bbox(1)];
lonlim=[bbox(3) bbox(4)];
clear bbox;
% bbox=[north,south,west,east];
% [southern_limit northern_limit]
% [western_limit eastern_limit]
tileNames = gtopo30s(latlim,lonlim);
clear latlim lonlim;
if isempty(tileNames) % no tiles, return empty.
auxi_data=[]; % set empty layer.
return;
end
% auxi_data = zeros(target_gridobj.size,'double'); % dem mask
auxi_data = NaN(target_gridobj.size,'double'); % dem mask
% mask_dem = createmask(target_gridobj);
for i=1:length(tileNames)
tile_name=['gt30',lower(char(tileNames(i)))];
if ~isempty(tile_name)
% unzip files.
filename = fullfile(auxi_path,[tile_name,'.zip']);
if exist(filename,'file')
unzip(filename,cache_path);
filename = fullfile(cache_path,[tile_name,'.tif']);
% reproject to UTM same with target image.
auxi_data_part_tmp = GRIDobj(filename);
clear filename;
% In the gtopo30 DEM, ocean areas have been masked as "no data"
% ids_nan=auxi_data_part_tmp.Z==-9999;
% auxi_data_part_tmp.Z(ids_nan)=0;% give 0 to ocean.
% further give 0 to nan.
auxi_data_part_tmp.Z=fillmissing(auxi_data_part_tmp.Z,'constant',0);
% % % recontruct the refmat to 3-by-2 matrix because of the orginal RGB.
% % LON11=min(auxi_data_part_tmp.georef.SpatialRef.LongitudeLimits);
% % LAT11=max(auxi_data_part_tmp.georef.SpatialRef.LatitudeLimits);
% % % Convert to a geographic raster reference object:
% % DLON=auxi_data_part_tmp.cellsize;
% % DLAT=0-auxi_data_part_tmp.cellsize;
% % auxi_data_part_tmp.refmat = makerefmat(LON11, LAT11, DLON, DLAT);
auxi_data_tmp = reproject2utm(auxi_data_part_tmp,target_gridobj);
clear auxi_data_part_tmp;
auxi_data=max(auxi_data, double(auxi_data_tmp.Z));
clear auxi_data_tmp;
% % delete(filename); % delete the files
end
clear tile_name;
end
end
clear tileNames;
% if using more than 2 tiles, the mosaic method maybe result in some
% Nan values at lines. fast fill then.
if sum(sum(isnan(auxi_data)))>0
% see along-row or along-col
[row_nan,col_nan]=find(isnan(auxi_data));
row_diff=max(row_nan)-min(row_nan);
col_diff=max(col_nan)-min(col_nan);
% along row and col.
if row_diff>col_diff
auxi_data=fillmissing(auxi_data,'linear',2);% by row.
else
auxi_data=fillmissing(auxi_data,'linear',1);% by column.
end
% https://www.mathworks.com/help/matlab/ref/fillmissing.html?searchHighlight=fillmissing&s_tid=doc_srchtitle
end
% when have nan values in DEM,this will be ocean. all as 0.
auxi_data=fillmissing(auxi_data,'constant',0);
end
function auxi_data = MosaicLocalAuxiData(auxi_type,auxi_path,cache_path,target_gridobj,bbox)
switch auxi_type
case 'DEM'
pname_1th='gt30';
case 'WATER'
pname_1th='occurrence';
otherwise
error('The input of auxiliary type is incorrect, which should be ''DEM'' or ''WATER''.');
end
% target_image
% get the up-left cornner's name for water title
[tiles_used, ul_name, ur_name, ll_name, lr_name] = ConvertBBox2TileName(bbox,pname_1th);
clear bbox pname_1th;
if sum(tiles_used(:))==0 % no tiles, return empty.
auxi_data=[]; % set empty water layer.
return;
end
auxi_data = zeros(target_gridobj.size,'double'); % water mask
% loop all water titles covering the Landsat or Sentinel image.
for i=1:4
tile_name='';
switch i
case 1
if tiles_used(i)
tile_name=ul_name;
end
case 2
if tiles_used(i)
tile_name=ur_name;
end
case 3
if tiles_used(i)
tile_name=ll_name;
end
case 4
if tiles_used(i)
tile_name=lr_name;
end
end
if ~isempty(tile_name)
% unzip files.
filename = fullfile(auxi_path,[tile_name,'.zip']);
% cache_path=fullfile(pwd,'Cache');
if exist(filename,'file')
unzip(filename,cache_path);
filename = fullfile(cache_path,[tile_name,'.tif']);
% filename = [water_path,tile_name,'.tif'];
% reproject to UTM same with target image.
auxi_data_part_tmp = GRIDobj(filename);
clear filename;
% recontruct the refmat to 3-by-2 matrix because of the orginal RGB.
% LON11=min(auxi_data_part_tmp.georef.SpatialRef.LongitudeLimits);
% LAT11=max(auxi_data_part_tmp.georef.SpatialRef.LatitudeLimits);
% % Convert to a geographic raster reference object:
% % rasterSize = auxi_data_part_tmp.size;
% DLON=auxi_data_part_tmp.cellsize;
% DLAT=0-auxi_data_part_tmp.cellsize;
% % cell_resol=10/rasterSize(1);
% % DLON=cell_resol;
% % DLAT=0-cell_resol;
% auxi_data_part_tmp.refmat = makerefmat(LON11, LAT11, DLON, DLAT);
auxi_data_part_tmp.Z=fillmissing(auxi_data_part_tmp.Z,'constant',255);% 255 or No data indicates ocean area.
% auxi_data_part_tmp.Z(isnan(auxi_data_part_tmp.Z))=255;% 255 or No data indicates ocean area.
auxi_data_tmp = reproject2utm(auxi_data_part_tmp,target_gridobj);
clear auxi_data_part_tmp;
% auxi_data_part_tmp.Z=fillmissing(auxi_data_part_tmp.Z,'constant',0);% no data indicates no sure whether there is water.
auxi_data=max(auxi_data,double(auxi_data_tmp.Z));
clear auxi_data_tmp;
% delete(filename); % delete the files
else
tiles_used(i)=0;% no data file!
end
end
end
% see it has or not again
if sum(tiles_used(:))==0 % no tiles, return empty.
auxi_data=[]; % set empty.
return;
end
if sum(tiles_used(:))>1% masic will lead to none data.
auxi_data = medfilt2(auxi_data); % filter it.
end
clear tiles_used;
switch auxi_type
case 'DEM'
auxi_data=int16(auxi_data); % convert to intergr with 16 bit for DEM, can be negative and positive
case 'WATER'
auxi_data=uint8(auxi_data); % convert to intergr with 8 bit for water, only be positive.
end
clear auxi_type;
end
function [tiles_used, ul_name, ur_name, ll_name, lr_name] = ConvertBBox2TileName(bbox,pname_1th)
tiles_used=zeros(1,4);
% bbox=[north,south,west,east];
% e.g., 21.2993 19.1468 77.7836 80.0166
% 30N 19N 70E 90E
size_tile=10;% unit: degree.
% bbox=[21.2993 19.1468 77.7836 80.0166];
% to negative infinity
bbox_floor=size_tile.*floor(bbox./size_tile); %e.g., floor: floor(-1.3)=-2; floor(1.3)=1;
% 20 10 70 80
% to positive infinity
bbox_ceil=size_tile.*ceil(bbox./size_tile); %e.g., ceil: ceil(-1.3)=-1; ceil(1.3)=2;
clear size_tile bbox;
% 30 20 80 90
% % % four corners for each image.
% % ul_loc=[bbox(1) bbox(3)];
% % ur_loc=[bbox(1) bbox(4)];
% % ll_loc=[bbox(2) bbox(3)];
% % lr_loc=[bbox(2) bbox(4)];
% find the Granule's top-left corner.
ul_loc=[bbox_ceil(1) bbox_floor(3)];
ur_loc=[bbox_ceil(1) bbox_floor(4)];
ll_loc=[bbox_ceil(2) bbox_floor(3)];
lr_loc=[bbox_ceil(2) bbox_floor(4)];
clear bbox_ceil bbox_floor;
% pname_1th='occurrence';
ul_pname_2th=convertNumel2Char(ul_loc);
ur_pname_2th=convertNumel2Char(ur_loc);
ll_pname_2th=convertNumel2Char(ll_loc);
lr_pname_2th=convertNumel2Char(lr_loc);
clear ul_loc ur_loc ll_loc lr_loc;
ul_name=[pname_1th,ul_pname_2th];
ur_name='';
ll_name='';
lr_name='';
% remove repeat tiles.
tiles_used(1)=1; % always have 1 or more than 1 tile.
if ~isequal(ul_pname_2th,ur_pname_2th)
ur_name=[pname_1th,ur_pname_2th];
tiles_used(2)=1;
end
if ~isequal(ul_pname_2th,ll_pname_2th)&&~isequal(ur_pname_2th,ll_pname_2th)
ll_name=[pname_1th,ll_pname_2th];
tiles_used(3)=1;
end
if ~isequal(ul_pname_2th,lr_pname_2th)&&~isequal(ur_pname_2th,lr_pname_2th)&&~isequal(ll_pname_2th,lr_pname_2th)
lr_name=[pname_1th,lr_pname_2th];
tiles_used(4)=1;
end
end
function pname_2th=convertNumel2Char(corner)
pname_2th='_';
if corner(2)>=0
pname_2th=[pname_2th,num2str(abs(corner(2))),'E_'];
else
pname_2th=[pname_2th,num2str(abs(corner(2))),'W_'];
end
if corner(1)>=0
pname_2th=[pname_2th,num2str(abs(corner(1))),'N'];
else
pname_2th=[pname_2th,num2str(abs(corner(1))),'S'];
end
end