-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathautoTSFit.m
82 lines (72 loc) · 1.6 KB
/
autoTSFit.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
function [fit_cft,rmse,v_dif]=autoTSFit(x,y,df)
% Revisions:
% v1.0 Using lasso for timeseries modeling (01/27/2013)
% Auto Trends and Seasonal Fit between breaks
% INPUTS:
% x - Julian day [1; 2; 3];
% y - predicted reflectances [0.1; 0.2; 0.3];
% df - degree of freedom (num_c)
%
% OUTPUTS:
% fit_cft - fitted coefficients;
% General model TSModel:
% f1(x) = a0 + b0*x (df = 2)
% f2(x) = f1(x) + a1*cos(x*w) + b1*sin(x*w) (df = 4)
% f3(x) = f2(x) + a2*cos(x*2w) + b2*sin(x*2w) (df = 6)
% f4(x) = f3(x) + a3*cos(x*3w) + b3*sin(x*3w) (df = 8)
n=length(x); % number of clear pixels
% num_yrs = 365.25; % number of days per year
w=2*pi/365.25; % num_yrs; % anual cycle
% fit coefs
fit_cft = zeros(8,1);
% global lamda_lasso
%% LASSO Fit
% build X
X = zeros(n,df-1);
X(:,1) = x;
if df >= 4
X(:,2)=cos(w*x);
X(:,3)=sin(w*x);
end
if df >= 6
X(:,4)=cos(2*w*x);
X(:,5)=sin(2*w*x);
end
if df >= 8
X(:,6)=cos(3*w*x);
X(:,7)=sin(3*w*x);
end
% lasso fit with lambda = 20
fit = glmnet_fast(X,y,glmnetSetL(20));
% curr_cft=[fit.a0;fit.beta];
fit_cft(1:df) = [fit.a0;fit.beta]; % curr_cft;
% %% OLS Fit
%
% % build X
% X = zeros(n,df);
% X(:,1) = ones(n,1);
% X(:,2) = x;
%
% if df >= 4
% X(:,3)=cos(w*x);
% X(:,4)=sin(w*x);
% end
%
% if df >= 6
% X(:,5)=cos(2*w*x);
% X(:,6)=sin(2*w*x);
% end
%
% if df >= 8
% X(:,7)=cos(3*w*x);
% X(:,8)=sin(3*w*x);
% end
%
% % curr_cft=[fit.a0;fit.beta];
% fit_cft(1:df) = X\y; % curr_cft;
yhat=autoTSPred(x,fit_cft);
% rmse=median(abs(y-yhat));
v_dif = y-yhat;
rmse=norm(v_dif)/sqrt(n-df);
% f(x) = a0 + b0*x + a1*cos(x*w) + b1*sin(x*w) (df = 4)
end