This repository is currently being migrated. It's locked while the migration is in progress.
forked from h3ct0r/fast_ellipse_detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.cpp
728 lines (555 loc) · 18.3 KB
/
Main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/*
This code is intended for academic use only.
You are free to use and modify the code, at your own risk.
If you use this code, or find it useful, please refer to the paper:
Michele Fornaciari, Andrea Prati, Rita Cucchiara,
A fast and effective ellipse detector for embedded vision applications
Pattern Recognition, Volume 47, Issue 11, November 2014, Pages 3693-3708, ISSN 0031-3203,
http://dx.doi.org/10.1016/j.patcog.2014.05.012.
(http://www.sciencedirect.com/science/article/pii/S0031320314001976)
The comments in the code refer to the abovementioned paper.
If you need further details about the code or the algorithm, please contact me at:
michele.fornaciari@unimore.it
last update: 23/12/2014
*/
#include <limits.h> /* PATH_MAX */
#include <stdlib.h>
#include <stdio.h>
// #include <cv.h>
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include "EllipseDetectorYaed.h"
#include <fstream>
using namespace std;
using namespace cv;
// Should be checked
void SaveEllipses(const string& workingDir, const string& imgName, const vector<Ellipse>& ellipses /*, const vector<double>& times*/)
{
string path(workingDir + "/" + imgName + ".txt");
ofstream out(path, ofstream::out | ofstream::trunc);
if (!out.good())
{
cout << "Error saving: " << path << endl;
return;
}
// Save execution time
//out << times[0] << "\t" << times[1] << "\t" << times[2] << "\t" << times[3] << "\t" << times[4] << "\t" << times[5] << "\t" << "\n";
unsigned n = ellipses.size();
// Save number of ellipses
out << n << "\n";
// Save ellipses
for (unsigned i = 0; i < n; ++i)
{
const Ellipse& e = ellipses[i];
out << e._xc << "\t" << e._yc << "\t" << e._a << "\t" << e._b << "\t" << e._rad << "\t" << e._score << "\n";
}
out.close();
}
// Should be checked
bool LoadTest(vector<Ellipse>& ellipses, const string& sTestFileName, vector<double>& times, bool bIsAngleInRadians = true)
{
ifstream in(sTestFileName);
if (!in.good())
{
cout << "Error opening: " << sTestFileName << endl;
return false;
}
times.resize(6);
in >> times[0] >> times[1] >> times[2] >> times[3] >> times[4] >> times[5];
unsigned n;
in >> n;
ellipses.clear();
if (n == 0) return true;
ellipses.reserve(n);
while (in.good() && n--)
{
Ellipse e;
in >> e._xc >> e._yc >> e._a >> e._b >> e._rad >> e._score;
if (!bIsAngleInRadians)
{
e._rad = e._rad * float(CV_PI / 180.0);
}
e._rad = fmod(float(e._rad + 2.0*CV_PI), float(CV_PI));
if ((e._a > 0) && (e._b > 0) && (e._rad >= 0))
{
ellipses.push_back(e);
}
}
in.close();
// Sort ellipses by decreasing score
sort(ellipses.begin(), ellipses.end());
return true;
}
void LoadGT(vector<Ellipse>& gt, const string& sGtFileName, bool bIsAngleInRadians = true)
{
ifstream in(sGtFileName);
if (!in.good())
{
cout << "Error opening: " << sGtFileName << endl;
return;
}
unsigned n;
in >> n;
gt.clear();
gt.reserve(n);
while (in.good() && n--)
{
Ellipse e;
in >> e._xc >> e._yc >> e._a >> e._b >> e._rad;
if (!bIsAngleInRadians)
{
// convert to radians
e._rad = float(e._rad * CV_PI / 180.0);
}
if (e._a < e._b)
{
float temp = e._a;
e._a = e._b;
e._b = temp;
e._rad = e._rad + float(0.5*CV_PI);
}
e._rad = fmod(float(e._rad + 2.f*CV_PI), float(CV_PI));
e._score = 1.f;
gt.push_back(e);
}
in.close();
}
bool TestOverlap(const Mat1b& gt, const Mat1b& test, float th)
{
float fAND = float(countNonZero(gt & test));
float fOR = float(countNonZero(gt | test));
float fsim = fAND / fOR;
return (fsim >= th);
}
int Count(const vector<bool> v)
{
int counter = 0;
for (unsigned i = 0; i < v.size(); ++i)
{
if (v[i]) { ++counter; }
}
return counter;
}
// Should be checked !!!!!
std::tuple<float, float, float> Evaluate(const vector<Ellipse>& ellGT, const vector<Ellipse>& ellTest, const float th_score, const Mat3b& img)
{
float threshold_overlap = 0.8f;
//float threshold = 0.95f;
unsigned sz_gt = ellGT.size();
unsigned size_test = ellTest.size();
unsigned sz_test = unsigned(min(1000, int(size_test)));
vector<Mat1b> gts(sz_gt);
vector<Mat1b> tests(sz_test);
for (unsigned i = 0; i < sz_gt; ++i)
{
const Ellipse& e = ellGT[i];
Mat1b tmp(img.rows, img.cols, uchar(0));
ellipse(tmp, Point(e._xc, e._yc), Size(e._a, e._b), e._rad * 180.0 / CV_PI, 0.0, 360.0, Scalar(255), -1);
gts[i] = tmp;
}
for (unsigned i = 0; i < sz_test; ++i)
{
const Ellipse& e = ellTest[i];
Mat1b tmp(img.rows, img.cols, uchar(0));
ellipse(tmp, Point(e._xc, e._yc), Size(e._a, e._b), e._rad * 180.0 / CV_PI, 0.0, 360.0, Scalar(255), -1);
tests[i] = tmp;
}
Mat1b overlap(sz_gt, sz_test, uchar(0));
for (int r = 0; r < overlap.rows; ++r)
{
for (int c = 0; c < overlap.cols; ++c)
{
overlap(r, c) = TestOverlap(gts[r], tests[c], threshold_overlap) ? uchar(255) : uchar(0);
}
}
int counter = 0;
vector<bool> vec_gt(sz_gt, false);
for (int i = 0; i < sz_test; ++i)
{
const Ellipse& e = ellTest[i];
for (int j = 0; j < sz_gt; ++j)
{
if (vec_gt[j]) { continue; }
bool bTest = overlap(j, i) != 0;
if (bTest)
{
vec_gt[j] = true;
break;
}
}
}
int tp = Count(vec_gt);
int fn = int(sz_gt) - tp;
int fp = size_test - tp; // !!!!
float pr(0.f);
float re(0.f);
float fmeasure(0.f);
if (tp == 0)
{
if (fp == 0)
{
pr = 1.f;
re = 0.f;
fmeasure = (2.f * pr * re) / (pr + re);
}
else
{
pr = 0.f;
re = 0.f;
fmeasure = 0.f;
}
}
else
{
pr = float(tp) / float(tp + fp);
re = float(tp) / float(tp + fn);
fmeasure = (2.f * pr * re) / (pr + re);
}
return make_tuple(pr, re, fmeasure);
}
void OnImage(char *image_path)
{
// Check if the file provided is a valid image
string filename(image_path);
string file_basename = basename(image_path);
string ext = file_basename.substr(file_basename.find_last_of(".") + 1);
if (!((ext == "jpeg") || (ext == "jpg"))) {
cout << "image must be .jpeg or .jpg" << endl;
return;
}
string filename_minus_ext = filename.substr(0, filename.find_last_of("."));
cout << "Annotating image \"" << image_path << "\"" << endl;
// Read image
Mat3b image = imread(filename);
Size sz = image.size();
int width = sz.width;
int height = sz.height;
int scale = ceil((float)width / 800) - 1;
// int width = 800;
// int height = 600;
// Convert to grayscale
Mat1b gray;
cvtColor(image, gray, COLOR_BGR2GRAY);
// Parameters Settings (Sect. 4.2)
int iThLength = (int)(16 * pow(2, scale));
float fThObb = 3.0f;
float fThPos = 1.0f;
float fTaoCenters = 0.05f;
int iNs = 16;
float fMaxCenterDistance = sqrt(float(width*width + height*height)) * fTaoCenters;
float fThScoreScore = 0.4f;
// Other constant parameters settings.
// Gaussian filter parameters, in pre-processing
Size szPreProcessingGaussKernelSize = Size(5, 5);
double dPreProcessingGaussSigma = 1.0;
float fDistanceToEllipseContour = 0.1f; // (Sect. 3.3.1 - Validation)
float fMinReliability = 0.4f; // Const parameters to discard bad ellipses
// Initialize Detector with selected parameters
CEllipseDetectorYaed* yaed = new CEllipseDetectorYaed();
yaed->SetParameters(szPreProcessingGaussKernelSize,
dPreProcessingGaussSigma,
fThPos,
fMaxCenterDistance,
iThLength,
fThObb,
fDistanceToEllipseContour,
fThScoreScore,
fMinReliability,
iNs
);
// Detect
vector<Ellipse> ellsYaed;
Mat1b gray2 = gray.clone();
yaed->Detect(gray2, ellsYaed);
vector<double> times = yaed->GetTimes();
cout << "--------------------------------" << endl;
cout << "Execution Time: " << endl;
cout << "Edge Detection: \t" << times[0] << endl;
cout << "Pre processing: \t" << times[1] << endl;
cout << "Grouping: \t" << times[2] << endl;
cout << "Estimation: \t" << times[3] << endl;
cout << "Validation: \t" << times[4] << endl;
cout << "Clustering: \t" << times[5] << endl;
cout << "--------------------------------" << endl;
cout << "Total: \t" << yaed->GetExecTime() << endl;
cout << "--------------------------------" << endl;
vector<Ellipse> gt;
LoadGT(gt, filename_minus_ext + ".txt", true); // Prasad is in radians
Mat3b resultImage = image.clone();
// Draw GT ellipses
for (unsigned i = 0; i < gt.size(); ++i)
{
Ellipse& e = gt[i];
Scalar color(0, 0, 255);
ellipse(resultImage, Point(cvRound(e._xc), cvRound(e._yc)), Size(cvRound(e._a), cvRound(e._b)), e._rad*180.0 / CV_PI, 0.0, 360.0, color, 3);
}
yaed->DrawDetectedEllipses(resultImage, ellsYaed);
Mat3b res = image.clone();
Evaluate(gt, ellsYaed, fThScoreScore, res);
// Show the image in a scalable window.
namedWindow("Annotated Image", WINDOW_NORMAL);
imshow("Annotated Image", resultImage);
waitKey();
}
void OnVideo()
{
string sWorkingDir = "/home/itv/Desktop/ellipse_detect";
string imagename = "1.jpg";
string filename = sWorkingDir + "/images/" + imagename;
VideoCapture cap(0);
if(!cap.isOpened()) return;
int width = 800;
int height = 600;
// Parameters Settings (Sect. 4.2)
int iThLength = 16;
float fThObb = 3.0f;
float fThPos = 1.0f;
float fTaoCenters = 0.05f;
int iNs = 16;
float fMaxCenterDistance = sqrt(float(width*width + height*height)) * fTaoCenters;
float fThScoreScore = 0.4f;
// Other constant parameters settings.
// Gaussian filter parameters, in pre-processing
Size szPreProcessingGaussKernelSize = Size(5, 5);
double dPreProcessingGaussSigma = 1.0;
float fDistanceToEllipseContour = 0.1f; // (Sect. 3.3.1 - Validation)
float fMinReliability = 0.4f; // Const parameters to discard bad ellipses
// Initialize Detector with selected parameters
CEllipseDetectorYaed* yaed = new CEllipseDetectorYaed();
yaed->SetParameters(szPreProcessingGaussKernelSize,
dPreProcessingGaussSigma,
fThPos,
fMaxCenterDistance,
iThLength,
fThObb,
fDistanceToEllipseContour,
fThScoreScore,
fMinReliability,
iNs
);
Mat1b gray;
while(true)
{
Mat3b image;
cap >> image;
cvtColor(image, gray, COLOR_BGR2GRAY);
vector<Ellipse> ellsYaed;
Mat1b gray2 = gray.clone();
yaed->Detect(gray2, ellsYaed);
vector<double> times = yaed->GetTimes();
cout << "--------------------------------" << endl;
cout << "Execution Time: " << endl;
cout << "Edge Detection: \t" << times[0] << endl;
cout << "Pre processing: \t" << times[1] << endl;
cout << "Grouping: \t" << times[2] << endl;
cout << "Estimation: \t" << times[3] << endl;
cout << "Validation: \t" << times[4] << endl;
cout << "Clustering: \t" << times[5] << endl;
cout << "--------------------------------" << endl;
cout << "Total: \t" << yaed->GetExecTime() << endl;
cout << "--------------------------------" << endl;
vector<Ellipse> gt;
LoadGT(gt, sWorkingDir + "/gt/" + "gt_" + imagename + ".txt", true); // Prasad is in radians
Mat3b resultImage = image.clone();
// Draw GT ellipses
for (unsigned i = 0; i < gt.size(); ++i)
{
Ellipse& e = gt[i];
Scalar color(0, 0, 255);
ellipse(resultImage, Point(cvRound(e._xc), cvRound(e._yc)), Size(cvRound(e._a), cvRound(e._b)), e._rad*180.0 / CV_PI, 0.0, 360.0, color, 3);
}
yaed->DrawDetectedEllipses(resultImage, ellsYaed);
Mat3b res = image.clone();
Evaluate(gt, ellsYaed, fThScoreScore, res);
imshow("Yaed", resultImage);
if(waitKey(10) >= 0) break;
}
}
void OnDataset()
{
string sWorkingDir = "D:\\data\\ellipse_dataset\\Random Images - Dataset #1\\";
//string sWorkingDir = "D:\\data\\ellipse_dataset\\Prasad Images - Dataset Prasad\\";
string out_folder = "D:\\data\\ellipse_dataset\\";
vector<string> names;
vector<float> prs;
vector<float> res;
vector<float> fms;
vector<double> tms;
glob(sWorkingDir + "images\\" + "*.*", names);
int counter = 0;
for (const auto& image_name : names)
{
cout << double(counter++) / names.size() << "\n";
string name_ext = image_name.substr(image_name.find_last_of("\\") + 1);
string name = name_ext.substr(0, name_ext.find_last_of("."));
Mat3b image = imread(image_name);
Size sz = image.size();
// Convert to grayscale
Mat1b gray;
cvtColor(image, gray, COLOR_BGR2GRAY);
// Parameters Settings (Sect. 4.2)
int iThLength = 16;
float fThObb = 3.0f;
float fThPos = 1.0f;
float fTaoCenters = 0.05f;
int iNs = 16;
float fMaxCenterDistance = sqrt(float(sz.width*sz.width + sz.height*sz.height)) * fTaoCenters;
float fThScoreScore = 0.72f;
// Other constant parameters settings.
// Gaussian filter parameters, in pre-processing
Size szPreProcessingGaussKernelSize = Size(5, 5);
double dPreProcessingGaussSigma = 1.0;
float fDistanceToEllipseContour = 0.1f; // (Sect. 3.3.1 - Validation)
float fMinReliability = 0.4; // Const parameters to discard bad ellipses
// Initialize Detector with selected parameters
CEllipseDetectorYaed* yaed = new CEllipseDetectorYaed();
yaed->SetParameters(szPreProcessingGaussKernelSize,
dPreProcessingGaussSigma,
fThPos,
fMaxCenterDistance,
iThLength,
fThObb,
fDistanceToEllipseContour,
fThScoreScore,
fMinReliability,
iNs
);
// Detect
vector<Ellipse> ellsYaed;
Mat1b gray2 = gray.clone();
yaed->Detect(gray2, ellsYaed);
/*vector<double> times = yaed.GetTimes();
cout << "--------------------------------" << endl;
cout << "Execution Time: " << endl;
cout << "Edge Detection: \t" << times[0] << endl;
cout << "Pre processing: \t" << times[1] << endl;
cout << "Grouping: \t" << times[2] << endl;
cout << "Estimation: \t" << times[3] << endl;
cout << "Validation: \t" << times[4] << endl;
cout << "Clustering: \t" << times[5] << endl;
cout << "--------------------------------" << endl;
cout << "Total: \t" << yaed.GetExecTime() << endl;
cout << "--------------------------------" << endl;*/
tms.push_back(yaed->GetExecTime());
vector<Ellipse> gt;
LoadGT(gt, sWorkingDir + "gt\\" + "gt_" + name_ext + ".txt", false); // Prasad is in radians,set to true
float pr, re, fm;
std::tie(pr, re, fm) = Evaluate(gt, ellsYaed, fThScoreScore, image);
prs.push_back(pr);
res.push_back(re);
fms.push_back(fm);
Mat3b resultImage = image.clone();
// Draw GT ellipses
for (unsigned i = 0; i < gt.size(); ++i)
{
Ellipse& e = gt[i];
Scalar color(0, 0, 255);
ellipse(resultImage, Point(cvRound(e._xc), cvRound(e._yc)), Size(cvRound(e._a), cvRound(e._b)), e._rad*180.0 / CV_PI, 0.0, 360.0, color, 3);
}
yaed->DrawDetectedEllipses(resultImage, ellsYaed);
//imwrite(out_folder + name + ".png", resultImage);
//imshow("Yaed", resultImage);
//waitKey();
int dbg = 0;
}
float N = float(prs.size());
float sumPR = accumulate(prs.begin(), prs.end(), 0.f);
float sumRE = accumulate(res.begin(), res.end(), 0.f);
float sumFM = accumulate(fms.begin(), fms.end(), 0.f);
double sumTM = accumulate(tms.begin(), tms.end(), 0.0);
float meanPR = sumPR / N;
float meanRE = sumRE / N;
float meanFM = sumFM / N;
double meanTM = sumTM / N;
float finalFM = (2.f * meanPR * meanRE) / (meanPR + meanRE);
cout << "F-measure : " << finalFM << endl;
cout << "Exec time : " << meanTM << endl;
getchar();
}
int main(int argc, char** argv)
{
if (argc != 2) {
cout << "Expected one argument" << endl;
return 1;
}
char *unresolved_path = argv[1];
char *resolved_path = (char *)malloc(PATH_MAX);
realpath(unresolved_path, resolved_path);
// char *extension = (char *)malloc(20);
// _splitpath_s(resolved_path, NULL, 0, NULL, 0, NULL, 0, extension, 20);
// cout << "file extension: " << extension << endl;
// OnVideo();
OnImage(resolved_path);
//OnDataset();
free(resolved_path);
// free(extension);
return 0;
}
// Test on single image
int main2()
{
string images_folder = "D:\\SO\\img\\";
string out_folder = "D:\\SO\\img\\";
vector<string> names;
glob(images_folder + "Lo3my4.*", names);
for (const auto& image_name : names)
{
string name = image_name.substr(image_name.find_last_of("\\") + 1);
name = name.substr(0, name.find_last_of("."));
Mat3b image = imread(image_name);
Size sz = image.size();
// Convert to grayscale
Mat1b gray;
cvtColor(image, gray, COLOR_BGR2GRAY);
// Parameters Settings (Sect. 4.2)
int iThLength = 16;
float fThObb = 3.0f;
float fThPos = 1.0f;
float fTaoCenters = 0.05f;
int iNs = 16;
float fMaxCenterDistance = sqrt(float(sz.width*sz.width + sz.height*sz.height)) * fTaoCenters;
float fThScoreScore = 0.7f;
// Other constant parameters settings.
// Gaussian filter parameters, in pre-processing
Size szPreProcessingGaussKernelSize = Size(5, 5);
double dPreProcessingGaussSigma = 1.0;
float fDistanceToEllipseContour = 0.1f; // (Sect. 3.3.1 - Validation)
float fMinReliability = 0.5; // Const parameters to discard bad ellipses
CEllipseDetectorYaed* yaed = new CEllipseDetectorYaed();
yaed->SetParameters(szPreProcessingGaussKernelSize,
dPreProcessingGaussSigma,
fThPos,
fMaxCenterDistance,
iThLength,
fThObb,
fDistanceToEllipseContour,
fThScoreScore,
fMinReliability,
iNs
);
// Detect
vector<Ellipse> ellsYaed;
Mat1b gray2 = gray.clone();
yaed->Detect(gray2, ellsYaed);
vector<double> times = yaed->GetTimes();
cout << "--------------------------------" << endl;
cout << "Execution Time: " << endl;
cout << "Edge Detection: \t" << times[0] << endl;
cout << "Pre processing: \t" << times[1] << endl;
cout << "Grouping: \t" << times[2] << endl;
cout << "Estimation: \t" << times[3] << endl;
cout << "Validation: \t" << times[4] << endl;
cout << "Clustering: \t" << times[5] << endl;
cout << "--------------------------------" << endl;
cout << "Total: \t" << yaed->GetExecTime() << endl;
cout << "--------------------------------" << endl;
Mat3b resultImage = image.clone();
yaed->DrawDetectedEllipses(resultImage, ellsYaed);
imwrite(out_folder + name + ".png", resultImage);
imshow("Yaed", resultImage);
waitKey();
int yghds = 0;
}
return 0;
}