-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
275 lines (258 loc) · 12.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os, re
import torch
import numpy as np
from glob import glob
from tqdm import tqdm
from torch import nn
from torch.utils.tensorboard import SummaryWriter
import logger as logger_
from datetime import datetime
class Trainer:
def __init__(self, model, dataloader, loss_func, optimizer, scheduler, n_epochs, acc_func=None, train_name='default',
resume_dict=None, ckp_dir=None, resume_ep='latest',
logger='tensorboard', log_dir=None, log_step_interval=100, log_graph=False, log_hparam={}, comment=None):
'''
If resume_dict is not None then load from resume_dict and ignore files stored in ckp_dir
'''
self.timestamp = datetime.now().strftime('%Y%m%d_%H%M%S%f')[:-3]
self.model = model
if torch.cuda.device_count() > 1:
self.model = nn.DataParallel(self.model)
self.dataloader = dataloader
self.loss_func = loss_func
self.optimizer = optimizer
self.scheduler = scheduler
self.n_epochs = n_epochs
self.acc_func = acc_func
self.logger = logger
self.log_hparam = log_hparam
self.ckp_dir = ckp_dir
self.log_dir = log_dir
self.log_step_interval = log_step_interval
self.start_epoch=0
self.epoch_loss = None
self.epoch_acc = None
self.epoch_val_acc = None
self.epoch_num = None
self.step_loss = None
self.step_acc = None
self.step_num = None
self.steps_per_epoch = len(self.dataloader)
if self.ckp_dir is None:
self.ckp_dir = './checkpoints/{}/{}'.format(train_name, self.timestamp)
if not os.path.isdir(self.ckp_dir):
os.makedirs(self.ckp_dir)
# find model
ckp_dir_file_names = os.listdir(self.ckp_dir)
if model is None:
if 'jit_model.pth' in ckp_dir_file_names:
self.model = torch.jit.load(os.path.join(self.ckp_dir, 'jit_model.pth'))
else:
raise ValueError('No model found')
# find resume ep
if resume_ep == 'latest':
epoch_file_list = glob(os.path.join(self.ckp_dir, 'epoch_*.pth'))
if len(epoch_file_list):
prog = re.compile("epoch_([0-9]+).pth")
epoch_number_list = [int(prog.findall(i)[0]) for i in epoch_file_list]
resume_ep = max(epoch_number_list)
print(f'Latest epoch {resume_ep} found.')
else:
resume_ep = None
else:
assert resume_ep.isnumeric(), ValueError("resume_ep must be numeric or 'latest'.")
assert os.path.isfile(os.path.join(self.ckp_dir, f"epoch_{resume_ep}.pth")), \
FileNotFoundError(f"epoch {resume_ep} not found in {self.ckp_dir}")
resume_ep = int(resume_ep)
if resume_dict is not None:
self.load_epoch(resume_dict)
elif resume_ep is not None:
self.load_epoch(os.path.join(self.ckp_dir, f"epoch_{resume_ep}.pth"))
# Logger
if self.logger == 'tensorboard':
if self.log_dir is None:
self.log_dir = 'tb_logs/{}'.format(train_name)
self.log_dir = os.path.join(self.log_dir, self.timestamp)
self.logger = logger_.TensorBoardLogger(self.log_dir)
elif self.logger == 'neptune':
self.logger = logger_.NeptuneLogger(train_name, self.log_dir, hparams=log_hparam, comment=comment)
elif isinstance(self.logger, logger_._Logger):
pass
else:
raise ValueError(f'Unknown type of logger {self.logger}')
self.record_params = ['loss_func', 'step_loss', 'step_acc']
self.epoch_finish_hook = []
self.logger.log_init(self)
def train(self):
for epoch in range(self.start_epoch, self.n_epochs):
self.epoch_num = epoch
current_lr = [group['lr'] for group in self.optimizer.param_groups][0]
print('---- start epoch: {}/{}\tlearning rate:{:.2E} ----'.format(self.epoch_num, self.n_epochs, current_lr))
self.epoch_loss, self.epoch_acc = self.train_epoch()
for fn in self.epoch_finish_hook:
fn(self)
# tb_writer.add_scalar('epoch/lr', scheduler.get_lr()[0], epoch)
# tb_writer.add_scalar('epoch/train_loss',epoch_loss, epoch)
# if epoch_acc is not None:
# tb_writer.add_scalar('epoch/train_acc', epoch_acc, epoch)
# tb_writer.flush()
self.scheduler.step()
print('end epoch: {}/{}\ttrain loss: {:.2f}\ttrain acc: {}\n'.format(self.epoch_num, self.n_epochs, self.epoch_loss, self.epoch_acc))
self.save_epoch()
def train_epoch(self):
self.model.train()
total_loss = 0
total_acc = 0
tbar = tqdm(enumerate(self.dataloader), total=len(self.dataloader))
for batch_idx, (data, target) in tbar:
self.step_num = batch_idx
self.optimizer.zero_grad()
if type(data) is tuple:
data = tuple(d.cuda() for d in data)
model_output = [self.model(d) for d in data]
elif type(data) is torch.Tensor:
model_output = self.model(data.cuda())
else:
model_output = self.model(data)
# raise TypeError(f'Unknown type of input data{type(data)}')
loss = self.loss_func(model_output, target)
self.step_loss = loss.item()
total_loss += self.step_loss
loss.backward()
self.optimizer.step()
self.logger.step(self)
if self.acc_func is None:
tbar.set_description('loss: {:.2f}'.format(self.step_loss))
else:
acc = self.acc_func(model_output, target)
self.step_acc = acc
total_acc += self.step_acc
tbar.set_description('loss: {:.2f}, acc: {:.2f}'.format(self.step_loss, acc))
epoch_loss = total_loss/len(self.dataloader)
epoch_acc = None
if self.acc_func is not None:
epoch_acc = total_acc/len(self.dataloader)
return epoch_loss, epoch_acc
def add_epoch_hook(self, func):
self.epoch_finish_hook.append(func)
return len(self.epoch_finish_hook) - 1
def remove_epoch_hook(self, i):
self.epoch_finish_hook.pop(i)
def save_jit_model(self):
scripted_model = torch.jit.script(self.model)
torch.jit.save(scripted_model, os.path.join(self.ckp_dir, 'jit_model.pth'))
def save_epoch(self):
save_path = save_path = os.path.join(self.ckp_dir, 'epoch_{}.pth'.format(self.epoch_num))
torch.save({'epoch': self.epoch_num,
'model_state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler.state_dict()},
save_path)
def load_epoch(self, resume_dict):
if type(resume_dict) is str:
resume_dict = torch.load(resume_dict)
self.start_epoch = resume_dict['epoch'] + 1
self.model.load_state_dict(resume_dict['model_state_dict'])
self.optimizer.load_state_dict(resume_dict['optimizer'])
self.scheduler.load_state_dict(resume_dict['scheduler'])
# backward capability
def train(model, dataloader, loss_func, optimizer, scheduler, n_epochs, resume_dict=None, ckp_dir=None,
tb_log_dir=None, tb_log_step_interval=100):
trainer = Trainer(model, dataloader, loss_func, optimizer, scheduler, n_epochs, resume_dict=resume_dict,
ckp_dir=ckp_dir, tb_log_dir = tb_log_dir, log_step_interval=tb_log_step_interval)
trainer.train()
def train_deprecated(model, dataloader, loss_func, optimizer, scheduler, n_epochs, resume_dict=None, ckp_dir=None,
tb_log_dir=None, tb_log_step_interval=100):
if tb_log_dir is None:
tb_log_dir = 'tb_logs/{}'.format(os.path.split(ckp_dir)[-1])
tb_writer = SummaryWriter(tb_log_dir)
start_epoch = 0
if resume_dict is not None:
start_epoch = resume_dict['epoch']
model.load_state_dict(resume_dict['model_state_dict'])
optimizer.load_state_dict(resume_dict['optimizer'])
scheduler.load_state_dict(resume_dict['scheduler'])
if ckp_dir is None:
ckp_dir = './checkpoints/default'
if not os.path.isdir(ckp_dir):
os.makedirs(ckp_dir)
for epoch in range(start_epoch, n_epochs):
current_lr = [group['lr'] for group in optimizer.param_groups][0]
print('start epoch: {}/{}\tlearning rate:{:.2E}\t'.format(epoch, n_epochs, current_lr))
epoch_loss, epoch_acc = train_epoch(model, dataloader, loss_func, optimizer, epoch, tb_writer=tb_writer, tb_log_step_interval=tb_log_step_interval)
tb_writer.add_scalar('epoch/lr', current_lr, epoch)
tb_writer.add_scalar('epoch/train_loss',epoch_loss, epoch)
if epoch_acc is not None:
tb_writer.add_scalar('epoch/train_acc', epoch_acc, epoch)
tb_writer.flush()
scheduler.step()
print('end epoch: {}/{}\ttrain loss: {:.2f}\ttrain acc: {}'.format(epoch, n_epochs, epoch_loss, epoch_acc))
print('-------\n')
ckp_path = os.path.join(ckp_dir, 'epoch_{}.pth'.format(epoch+1))
torch.save({'epoch': epoch+1,
'model_state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'loss': epoch_loss,
'acc': epoch_acc},
ckp_path)
def train_epoch(model, dataloader, loss_func, optimizer, current_epoch, acc_func=None, tb_writer=None, tb_log_step_interval=100):
model.train()
total_loss = 0
total_acc = 0
tb_logger_total_loss = 0
tb_logger_total_acc = 0
tbar = tqdm(enumerate(dataloader), total=len(dataloader))
for batch_idx, (data, target) in tbar:
data = tuple(d.cuda() for d in data)
optimizer.zero_grad()
model_output = [model(d) for d in data]
loss = loss_func(model_output, target)
total_loss += loss.item()
tb_logger_total_loss += loss.item()
loss.backward()
optimizer.step()
if acc_func is None:
tbar.set_description('loss: {:.2f}'.format(loss.item()))
else:
acc = acc_func(model_output, target)
total_acc += acc
tb_logger_total_acc += acc
tbar.set_description('loss: {:.2f}, acc: {:.2f}'.format(loss.item(), acc))
# Tensorboar logging
if tb_writer is not None:
if batch_idx % tb_log_step_interval == tb_log_step_interval - 1:
tb_writer.add_scalar('step/train_loss', tb_logger_total_loss/tb_log_step_interval, current_epoch*len(dataloader)+batch_idx)
tb_logger_total_loss = 0
if acc_func is not None:
tb_writer.add_scalar('step/train_acc', tb_logger_total_acc/tb_log_step_interval, current_epoch*len(dataloader)+batch_idx)
tb_logger_total_acc = 0
tb_writer.flush()
epoch_loss = total_loss/len(dataloader)
epoch_acc = None
if acc_func is not None:
epoch_acc = total_acc/len(dataloader)
return epoch_loss, epoch_acc
"""if __name__ == '__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
resume_dict = None
# resume_dict = torch.load('./checkpoints/epoch_30.pth')
print('Training on large dataset')
lr = 1e-3
batch_size = 16
print('Load dataset')
image_transform = transforms.Compose([transforms.CenterCrop((700, 1000)),
transforms.RandomCrop((700, 700)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()])
dataset = LimeCardinalTripletDataset('./terraref/scanner3DTop/lime_cardinal_dataset/dataset/', transform=image_transform)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=10)
print('Init model')
model = resnet_50_embedding()
loss_func = TripletMarginLoss()
model.cuda()
optimizer = optim.Adam(model.parameters(), lr=lr)
scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1)
print('Train 1 epoch')
train(model, dataloader, loss_func, optimizer, scheduler, 64, resume_dict=resume_dict)
"""