-
Notifications
You must be signed in to change notification settings - Fork 8
/
ConTop3D.m
279 lines (279 loc) · 17.4 KB
/
ConTop3D.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
function ConTop3D(Macro_struct, Micro_struct, penal, rmin)
% USER-DEFINED LOOP PARAMETERS
maxloop = 200; displayflag = 1; E0 = 1; Emin = 1e-9; nu = 0.3;
Macro.length = Macro_struct(1); Macro.width = Macro_struct(2); Macro.Height = Macro_struct(3);
Micro.length = Micro_struct(1); Micro.width = Micro_struct(2); Micro.Height = Micro_struct(3);
Macro.nelx = Macro_struct(4); Macro.nely = Macro_struct(5); Macro.nelz = Macro_struct(6);
Micro.nelx = Micro_struct(4); Micro.nely = Micro_struct(5); Micro.nelz = Micro_struct(6);
Macro.Vol = Macro_struct(7); Micro.Vol = Micro_struct(7);
Macro.Elex = Macro.length/Macro.nelx; Macro.Eley = Macro.width/Macro.nely; Macro.Elez = Macro.Height/Macro.nelz;
Macro.nele = Macro.nelx*Macro.nely*Macro.nelz; Micro.nele = Micro.nelx*Micro.nely*Micro.nelz;
Macro.ndof = 3*(Macro.nelx+1)*(Macro.nely+1)*(Macro.nelz+1);
% PREPARE FINITE ELEMENT ANALYSIS
[load_x,load_y,load_z] = meshgrid(Macro.nelx/2, Macro.nely, Macro.nelz/2);
loadnid = load_z*(Macro.nelx+1)*(Macro.nely+1)+load_x*(Macro.nely+1)+(Macro.nely+1-load_y);
F = sparse(3*loadnid(:) - 1,1,-1,Macro.ndof,1);
U = zeros(Macro.ndof,1);
[fixed_x,fixed_y,fixed_z] = meshgrid([0 Macro.nelx],0,[0 Macro.nelz]);
fixednid = fixed_z*(Macro.nelx+1)*(Macro.nely+1)+fixed_x*(Macro.nely+1)+(Macro.nely+1-fixed_y);
fixeddofs = [3*fixednid(:); 3*fixednid(:)-1; 3*fixednid(:)-2];
freedofs = setdiff(1:Macro.ndof,fixeddofs);
nodegrd = reshape(1:(Macro.nely+1)*(Macro.nelx+1),Macro.nely+1,Macro.nelx+1);
nodeids = reshape(nodegrd(1:end-1,1:end-1),Macro.nely*Macro.nelx,1);
nodeidz = 0:(Macro.nely+1)*(Macro.nelx+1):(Macro.nelz-1)*(Macro.nely+1)*(Macro.nelx+1);
nodeids = repmat(nodeids,size(nodeidz))+repmat(nodeidz,size(nodeids));
edofMat = repmat(3*nodeids(:)+1,1,24)+ repmat([0 1 2 3*Macro.nely + [3 4 5 0 1 2] -3 -2 -1 ...
3*(Macro.nely+1)*(Macro.nelx+1)+[0 1 2 3*Macro.nely + [3 4 5 0 1 2] -3 -2 -1]],Macro.nele,1);
iK = reshape(kron(edofMat,ones(24,1))',24*24*Macro.nele,1);
jK = reshape(kron(edofMat,ones(1,24))',24*24*Macro.nele,1);
% PREPARE FILTER
[Macro.H,Macro.Hs] = filtering3d(Macro.nelx, Macro.nely, Macro.nelz, Macro.nele, rmin);
[Micro.H,Micro.Hs] = filtering3d(Micro.nelx, Micro.nely, Micro.nelz, Micro.nele, rmin);
% INITIALIZE ITERATION
Macro.x = repmat(Macro.Vol,[Macro.nely,Macro.nelx,Macro.nelz]);
Micro.x = ones(Micro.nely,Micro.nelx,Micro.nelz);
Micro.x(Micro.nely/2:Micro.nely/2+1,Micro.nelx/2:Micro.nelx/2+1,Micro.nelz/2:Micro.nelz/2+1) = 0;
beta = 1;
Macro.xTilde = Macro.x; Micro.xTilde = Micro.x;
Macro.xPhys = 1-exp(-beta*Macro.xTilde)+Macro.xTilde*exp(-beta);
Micro.xPhys = 1-exp(-beta*Micro.xTilde)+Micro.xTilde*exp(-beta);
loopbeta = 0; loop = 0; Macro.change = 1; Micro.change = 1;
while loop < maxloop || Macro.change > 0.01 || Micro.change > 0.01
loop = loop+1; loopbeta = loopbeta+1;
% FE-ANALYSIS AT TWO SCALES
[DH, dDH] = EBHM3D(Micro.xPhys, Micro.length, Micro.width, Micro.Height, E0, Emin, nu, penal);
Ke = elementMatVec3D(Macro.Elex/2, Macro.Eley/2, Macro.Elez/2, DH);
sK = reshape(Ke(:)*(Emin+Macro.xPhys(:)'.^penal*(1-Emin)),24*24*Macro.nele,1);
K = sparse(iK,jK,sK); K = (K+K')/2;
U(freedofs,:) = K(freedofs,freedofs)\F(freedofs,:);
% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
ce = reshape(sum((U(edofMat)*Ke).*U(edofMat),2),[Macro.nely,Macro.nelx,Macro.nelz]);
c = sum(sum(sum((Emin+Macro.xPhys.^penal*(1-Emin)).*ce)));
Macro.dc = -penal*(1-Emin)*Macro.xPhys.^(penal-1).*ce;
Macro.dv = ones(Macro.nely, Macro.nelx, Macro.nelz);
Micro.dc = zeros(Micro.nely, Micro.nelx, Micro.nelz);
for i = 1:Micro.nele
dDHe = [dDH{1,1}(i) dDH{1,2}(i) dDH{1,3}(i) dDH{1,4}(i) dDH{1,5}(i) dDH{1,6}(i);
dDH{2,1}(i) dDH{2,2}(i) dDH{2,3}(i) dDH{2,4}(i) dDH{2,5}(i) dDH{2,6}(i);
dDH{3,1}(i) dDH{3,2}(i) dDH{3,3}(i) dDH{3,4}(i) dDH{3,5}(i) dDH{3,6}(i);
dDH{4,1}(i) dDH{4,2}(i) dDH{4,3}(i) dDH{4,4}(i) dDH{4,5}(i) dDH{4,6}(i);
dDH{5,1}(i) dDH{5,2}(i) dDH{5,3}(i) dDH{5,4}(i) dDH{5,5}(i) dDH{5,6}(i);
dDH{6,1}(i) dDH{6,2}(i) dDH{6,3}(i) dDH{6,4}(i) dDH{6,5}(i) dDH{6,6}(i)];
[dKE] = elementMatVec3D(Macro.Elex, Macro.Eley, Macro.Elez, dDHe);
dce = reshape(sum((U(edofMat)*dKE).*U(edofMat),2),[Macro.nely,Macro.nelx,Macro.nelz]);
Micro.dc(i) = -sum(sum(sum((Emin+Macro.xPhys.^penal*(1-Emin)).*dce)));
end
Micro.dv = ones(Micro.nely, Micro.nelx, Micro.nelz);
% FILTERING AND MODIFICATION OF SENSITIVITIES
Macro.dx = beta*exp(-beta*Macro.xTilde)+exp(-beta); Micro.dx = beta*exp(-beta*Micro.xTilde)+exp(-beta);
Macro.dc(:) = Macro.H*(Macro.dc(:).*Macro.dx(:)./Macro.Hs); Macro.dv(:) = Macro.H*(Macro.dv(:).*Macro.dx(:)./Macro.Hs);
Micro.dc(:) = Micro.H*(Micro.dc(:).*Micro.dx(:)./Micro.Hs); Micro.dv(:) = Micro.H*(Micro.dv(:).*Micro.dx(:)./Micro.Hs);
% OPTIMALITY CRITERIA UPDATE MACRO AND MICRO ELELMENT DENSITIES
[Macro.x, Macro.xPhys, Macro.change] = OC(Macro.x, Macro.dc, Macro.dv, Macro.H, Macro.Hs, Macro.Vol, Macro.nele, 0.02, beta);
[Micro.x, Micro.xPhys, Micro.change] = OC(Micro.x, Micro.dc, Micro.dv, Micro.H, Micro.Hs, Micro.Vol, Micro.nele, 0.02, beta);
Macro.xPhys = reshape(Macro.xPhys, Macro.nely, Macro.nelx, Macro.nelz);
Micro.xPhys = reshape(Micro.xPhys, Micro.nely, Micro.nelx, Micro.nelz);
% PRINT RESULTS
fprintf(' It.:%5i Obj.:%11.4f Macro_Vol.:%7.3f Micro_Vol.:%7.3f Macro_ch.:%7.3f Micro_ch.:%7.3f\n',...
loop,c,mean(Macro.xPhys(:)),mean(Micro.xPhys(:)), Macro.change, Micro.change);
if displayflag, clf; display_3D(Macro.xPhys); end
if displayflag, clf; display_3D(Micro.xPhys); end
% UPDATE HEAVISIDE REGULARIZATION PARAMETER
if beta < 512 && (loopbeta >= 50 || Macro.change <= 0.01 || Micro.change <= 0.01 )
beta = 2*beta; loopbeta = 0; Macro.change = 1; Micro.change = 1;
fprintf('Parameter beta increased to %g.\n',beta);
end
end
end
%% SUB FUNCTION:filtering3D
function [H,Hs] = filtering3d(nelx, nely, nelz, nele, rmin)
iH = ones(nele*(2*(ceil(rmin)-1)+1)^2,1);
jH = ones(size(iH));
sH = zeros(size(iH));
k = 0;
for k1 = 1:nelz
for i1 = 1:nelx
for j1 = 1:nely
e1 = (k1-1)*nelx*nely + (i1-1)*nely+j1;
for k2 = max(k1-(ceil(rmin)-1),1):min(k1+(ceil(rmin)-1),nelz)
for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
e2 = (k2-1)*nelx*nely + (i2-1)*nely+j2;
k = k+1;
iH(k) = e1;
jH(k) = e2;
sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2+(k1-k2)^2));
end
end
end
end
end
end
H = sparse(iH,jH,sH); Hs = sum(H,2);
end
%% SUB FUNCTION: EBHM3D
function [DH, dDH] = EBHM3D(den, lx, ly, lz, E0, Emin, nu, penal)
% the initial definitions of the PUC
D0 = E0/(1+nu)/(1-2*nu)*...
[ 1-nu nu nu 0 0 0 ;
nu 1-nu nu 0 0 0 ;
nu nu 1-nu 0 0 0 ;
0 0 0 (1-2*nu)/2 0 0 ;
0 0 0 0 (1-2*nu)/2 0 ;
0 0 0 0 0 (1-2*nu)/2];
[nely, nelx, nelz] = size(den); nele = nelx*nely*nelz;
dx = lx/nelx; dy = ly/nely; dz = lz/nelz;
Ke = elementMatVec3D(dx/2, dy/2, dz/2, D0);
Num_node = (1+nely)*(1+nelx)*(1+nelz);
nodenrs = reshape(1:Num_node,1+nely,1+nelx,1+nelz);
edofVec = reshape(3*nodenrs(1:end-1,1:end-1,1:end-1)+1,nelx*nely*nelz,1);
edofMat = repmat(edofVec,1,24)+repmat([0 1 2 3*nely+[3 4 5 0 1 2] -3 -2 -1 ...
3*(nelx+1)*(nely+1)+[0 1 2 3*nely+[3 4 5 0 1 2] -3 -2 -1]], nele, 1);
% 3D periodic boundary formulation
% the nodes classification
n1 = [nodenrs(end, [1 end], 1) nodenrs(1, [end 1], 1) nodenrs(end, [1 end], end) nodenrs(1, [end 1], end)];
d1 = reshape([3*n1-2; 3*n1-1; 3*n1],3*numel(n1),1);
n3 = [reshape(squeeze(nodenrs(end,1,2:end-1)),1,numel(squeeze(nodenrs(end,1,2:end-1))))... % AE
reshape(squeeze(nodenrs(1, 1, 2:end-1)),1,numel(squeeze(nodenrs(1, 1, 2:end-1))))... % DH
reshape(squeeze(nodenrs(end,2:end-1,1)),1,numel(squeeze(nodenrs(end,2:end-1,1))))... % AB
reshape(squeeze(nodenrs(1, 2:end-1, 1)),1,numel(squeeze(nodenrs(1, 2:end-1, 1))))... % DC
reshape(squeeze(nodenrs(2:end-1, 1, 1)),1,numel(squeeze(nodenrs(2:end-1, 1, 1))))... % AD
reshape(squeeze(nodenrs(2:end-1,1,end)),1,numel(squeeze(nodenrs(2:end-1,1,end))))... % EH
reshape(squeeze(nodenrs(2:end-1, 2:end-1, 1)),1,numel(squeeze(nodenrs(2:end-1, 2:end-1, 1))))... % ABCD
reshape(squeeze(nodenrs(2:end-1, 1, 2:end-1)),1,numel(squeeze(nodenrs(2:end-1, 1, 2:end-1))))... % ADHE
reshape(squeeze(nodenrs(end,2:end-1,2:end-1)),1,numel(squeeze(nodenrs(end,2:end-1,2:end-1))))]; % ABFE
d3 = reshape([3*n3-2; 3*n3-1; 3*n3],3*numel(n3),1);
n4 = [reshape(squeeze(nodenrs(1, end, 2:end-1)),1,numel(squeeze(nodenrs(1, end, 2:end-1))))... % CG
reshape(squeeze(nodenrs(end,end,2:end-1)),1,numel(squeeze(nodenrs(end,end,2:end-1))))... % BF
reshape(squeeze(nodenrs(1, 2:end-1, end)),1,numel(squeeze(nodenrs(1, 2:end-1, end))))... % HG
reshape(squeeze(nodenrs(end,2:end-1,end)),1,numel(squeeze(nodenrs(end,2:end-1,end))))... % EF
reshape(squeeze(nodenrs(2:end-1,end,end)),1,numel(squeeze(nodenrs(2:end-1,end,end))))... % FG
reshape(squeeze(nodenrs(2:end-1, end, 1)),1,numel(squeeze(nodenrs(2:end-1, end, 1))))... % BC
reshape(squeeze(nodenrs(2:end-1,2:end-1,end)),1,numel(squeeze(nodenrs(2:end-1,2:end-1,end))))... % EFGH
reshape(squeeze(nodenrs(2:end-1,end,2:end-1)),1,numel(squeeze(nodenrs(2:end-1,end,2:end-1))))... % BCGF
reshape(squeeze(nodenrs(1, 2:end-1, 2:end-1)),1,numel(squeeze(nodenrs(1, 2:end-1, 2:end-1))))]; % DCGH
d4 = reshape([3*n4-2; 3*n4-1; 3*n4],3*numel(n4),1);
n2 = setdiff(nodenrs(:),[n1(:);n3(:);n4(:)]); d2 = reshape([3*n2-2; 3*n2-1; 3*n2],3*numel(n2),1);
% the imposing of six linearly independent unit test strains
e = eye(6); ufixed = zeros(24,6);
vert_cor = [0 lx, lx, 0, 0, lx, lx, 0;
0 0, ly, ly, 0, 0, ly, ly;
0, 0, 0, 0, lz, lz, lz, lz];
for i = 1:6
epsilon = [ e(i,1), e(i,4)/2, e(i,6)/2;
e(i,4)/2, e(i,2), e(i,5)/2;
e(i,6)/2, e(i,5)/2, e(i,3)];
ufixed(:,i) = reshape(epsilon*vert_cor,24,1);
end
% 3D boundary constraint equations
wfixed = [repmat(ufixed( 7:9,:),numel(squeeze(nodenrs(end,1,2:end-1))),1); % C
repmat(ufixed( 4:6,:)-ufixed(10:12,:),numel(squeeze(nodenrs(1, 1, 2:end-1))),1); % B-D
repmat(ufixed(22:24,:),numel(squeeze(nodenrs(end,2:end-1,1))),1); % H
repmat(ufixed(13:15,:)-ufixed(10:12,:),numel(squeeze(nodenrs(1, 2:end-1, 1))),1); % E-D
repmat(ufixed(16:18,:),numel(squeeze(nodenrs(2:end-1, 1, 1))),1); % F
repmat(ufixed( 4:6,:)-ufixed(13:15,:),numel(squeeze(nodenrs(2:end-1,1,end))),1); % B-E
repmat(ufixed(13:15,:),numel(squeeze(nodenrs(2:end-1, 2:end-1, 1))),1); % E
repmat(ufixed( 4:6,:),numel(squeeze(nodenrs(2:end-1, 1, 2:end-1))),1); % B
repmat(ufixed(10:12,:),numel(squeeze(nodenrs(end,2:end-1,2:end-1))),1)]; % D
% the reduced elastic equilibrium equation to compute the induced displacement field
iK = reshape(kron(edofMat,ones(24,1))',24*24*nele,1);
jK = reshape(kron(edofMat,ones(1,24))',24*24*nele,1);
sK = reshape(Ke(:)*(Emin+den(:)'.^penal*(1-Emin)),24*24*nele,1);
K = sparse(iK(:), jK(:), sK(:)); K = (K+K')/2;
Kr = [K(d2,d2), K(d2,d3)+K(d2,d4); K(d3,d2)+K(d4,d2),K(d3,d3)+K(d4,d3)+K(d3,d4)+K(d4,d4)];
U(d1,:)= ufixed;
U([d2;d3],:) = Kr\(-[K(d2,d1);K(d3,d1)+K(d4,d1)]*ufixed-[K(d2,d4);K(d3,d4)+K(d4,d4)]*wfixed);
U(d4,:) = U(d3,:) + wfixed;
% homogenization to evaluate macroscopic effective properties
qe = cell(6,6);DH = zeros(6,6); dDH = cell(6,6);
cellVolume = lx*ly*lz;
for i = 1:6
for j = 1:6
U1 = U(:,i); U2 = U(:,j);
qe{i,j} = reshape(sum((U1(edofMat)*Ke).*U2(edofMat),2),nely,nelx,nelz);
DH(i,j) = 1/cellVolume*sum(sum(sum((Emin+den.^penal*(1-Emin)).*qe{i,j})));
dDH{i,j} = 1/cellVolume*(penal*(1-Emin)*den.^(penal-1).*qe{i,j});
end
end
disp('--- Homogenized elasticity tensor ---'); disp(DH)
end
%% SUB FUNCTION: elementMatVec3D
function Ke = elementMatVec3D(a, b, c, DH)
GN_x=[-1/sqrt(3),1/sqrt(3)]; GN_y=GN_x; GN_z=GN_x; GaussWeigh=[1,1];
Ke = zeros(24,24); L = zeros(6,9);
L(1,1) = 1; L(2,5) = 1; L(3,9) = 1;
L(4,2) = 1; L(4,4) = 1; L(5,6) = 1;
L(5,8) = 1; L(6,3) = 1; L(6,7) = 1;
for ii=1:length(GN_x)
for jj=1:length(GN_y)
for kk=1:length(GN_z)
x = GN_x(ii);y = GN_y(jj);z = GN_z(kk);
dNx = 1/8*[-(1-y)*(1-z) (1-y)*(1-z) (1+y)*(1-z) -(1+y)*(1-z) -(1-y)*(1+z) (1-y)*(1+z) (1+y)*(1+z) -(1+y)*(1+z)];
dNy = 1/8*[-(1-x)*(1-z) -(1+x)*(1-z) (1+x)*(1-z) (1-x)*(1-z) -(1-x)*(1+z) -(1+x)*(1+z) (1+x)*(1+z) (1-x)*(1+z)];
dNz = 1/8*[-(1-x)*(1-y) -(1+x)*(1-y) -(1+x)*(1+y) -(1-x)*(1+y) (1-x)*(1-y) (1+x)*(1-y) (1+x)*(1+y) (1-x)*(1+y)];
J = [dNx;dNy;dNz]*[ -a a a -a -a a a -a ; -b -b b b -b -b b b; -c -c -c -c c c c c]';
G = [inv(J) zeros(3) zeros(3);zeros(3) inv(J) zeros(3);zeros(3) zeros(3) inv(J)];
dN(1,1:3:24) = dNx; dN(2,1:3:24) = dNy; dN(3,1:3:24) = dNz;
dN(4,2:3:24) = dNx; dN(5,2:3:24) = dNy; dN(6,2:3:24) = dNz;
dN(7,3:3:24) = dNx; dN(8,3:3:24) = dNy; dN(9,3:3:24) = dNz;
Be = L*G*dN;
Ke = Ke + GaussWeigh(ii)*GaussWeigh(jj)*GaussWeigh(kk)*det(J)*(Be'*DH*Be);
end
end
end
end
%% SUB FUNCTION: OC
function [x, xPhys, change] = OC(x, dc, dv, H, Hs, volfrac, nele, move, beta)
l1 = 0; l2 = 1e9;
while (l2-l1)/(l1+l2) > 1e-3
lmid = 0.5*(l2+l1);
xnew = max(0,max(x-move,min(1,min(x+move,x.*sqrt(-dc./dv/lmid)))));
xTilde(:) = (H*xnew(:))./Hs; xPhys = 1-exp(-beta*xTilde)+xTilde*exp(-beta);
if sum(xPhys(:)) > volfrac*nele, l1 = lmid; else, l2 = lmid; end
end
change = max(abs(xnew(:)-x(:))); x = xnew;
end
%% SUB FUNCTION: display_3D
function display_3D(rho)
[nely,nelx,nelz] = size(rho);
hx = 1; hy = 1; hz = 1;
face = [1 2 3 4; 2 6 7 3; 4 3 7 8; 1 5 8 4; 1 2 6 5; 5 6 7 8];
set(gcf,'Name','ISO display','NumberTitle','off');
for k = 1:nelz
z = (k-1)*hz;
for i = 1:nelx
x = (i-1)*hx;
for j = 1:nely
y = nely*hy - (j-1)*hy;
if (rho(j,i,k) > 0)
vert = [x y z; x y-hx z; x+hx y-hx z; x+hx y z; x y z+hx;x y-hx z+hx; x+hx y-hx z+hx;x+hx y z+hx];
vert(:,[2 3]) = vert(:,[3 2]); vert(:,2,:) = -vert(:,2,:);
patch('Faces',face,'Vertices',vert,'FaceColor',[0.2+0.8*(1-rho(j,i,k)),0.2+0.8*(1-rho(j,i,k)),0.2+0.8*(1-rho(j,i,k))]);
hold on;
end
end
end
end
axis equal; axis tight; axis off; box on; view([30,30]); pause(1e-6);
end
%======================================================================================================================%
% Function ConTop3D: %
% A compact and efficient MATLAB code for Concurrent topology optimization of multiscale composite structures %
% in Matlab. %
% %
% Developed by: Jie Gao, Zhen Luo, Liang Xia and Liang Gao* %
% Email: gaoliang@mail.hust.edu.cn (GabrielJie_Tian@163.com) %
% %
% Main references: %
% %
% (1) Jie Gao, Zhen Luo, Liang Xia, Liang Gao. Concurrent topology optimization of multiscale composite structures %
% in Matlab. Accepted in Structural and multidisciplinary optimization. %
% %
% (2) Xia L, Breitkopf P. Design of materials using topology optimization and energy-based homogenization approach in %
% Matlab. % Structural and multidisciplinary optimization, 2015, 52(6): 1229-1241. %
% %
% ********************************************* Disclaimer ******************************************************* %
% The authors reserve all rights for the programs. The programs may be distributed and used for academic and %
% educational purposes. The authors do not guarantee that the code is free from errors,and they shall not be liable %
% in any event caused by the use of the program. %
%======================================================================================================================%