-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_caption.py
55 lines (51 loc) · 1.81 KB
/
generate_caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from pickle import load
from numpy import argmax
import argparse
import os
from gtts.tts import gTTS
from keras.preprocessing.sequence import pad_sequences
from keras.applications.resnet import ResNet101
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.applications.resnet import preprocess_input
from keras.models import Model
from keras.models import load_model
from keras import backend as K
def extract_features(filename):
model = ResNet101()
model.layers.pop()
model = Model(inputs=model.inputs, outputs=model.layers[-1].output)
image = load_img(filename, target_size=(224, 224))
image = img_to_array(image)
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
image = preprocess_input(image)
feature = model.predict(image, verbose=0)
return feature
def word_for_id(integer, tokenizer):
for word, index in tokenizer.word_index.items():
if index == integer:
return word
return None
def generate_desc(model, tokenizer, photo, max_length):
in_text = 'startseq'
for i in range(max_length):
sequence = tokenizer.texts_to_sequences([in_text])[0]
sequence = pad_sequences([sequence], maxlen=max_length)
yhat = model.predict([photo,sequence], verbose=0)
yhat = argmax(yhat)
# print("{0} : {1}".format(i, yhat))
word = word_for_id(yhat, tokenizer)
if word is None:
break
in_text += ' ' + word
if word == 'endseq':
break
return in_text
def generate_captions(photo_path):
tokenizer = load(open('tokenizer.pkl', 'rb'))
max_length = 34
model = load_model('model_300.h5')
photo = extract_features(photo_path)
description = generate_desc(model, tokenizer, photo, max_length)
description = description[9:-6]
return description