-
Notifications
You must be signed in to change notification settings - Fork 24
/
cv_close_eye_detect.py
43 lines (42 loc) · 1.87 KB
/
cv_close_eye_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import cv2
eye_cascPath = 'D:/DeepLearning/face/opencv-face-recognition-python-master/opencv-files/haarcascade_eye_tree_eyeglasses.xml' #eye detect model
face_cascPath = 'D:/DeepLearning/face/opencv-face-recognition-python-master/opencv-files/haarcascade_frontalface_alt.xml' #face detect model
faceCascade = cv2.CascadeClassifier(face_cascPath)
eyeCascade = cv2.CascadeClassifier(eye_cascPath)
cap = cv2.VideoCapture(0)
while 1:
ret, img = cap.read()
if ret:
frame = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detect faces in the image
faces = faceCascade.detectMultiScale(
frame,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
# flags = cv2.CV_HAAR_SCALE_IMAGE
)
# print("Found {0} faces!".format(len(faces)))
if len(faces) > 0:
# Draw a rectangle around the faces
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
frame_tmp = img[faces[0][1]:faces[0][1] + faces[0][3], faces[0][0]:faces[0][0] + faces[0][2]:1, :]
frame = frame[faces[0][1]:faces[0][1] + faces[0][3], faces[0][0]:faces[0][0] + faces[0][2]:1]
eyes = eyeCascade.detectMultiScale(
frame,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
# flags = cv2.CV_HAAR_SCALE_IMAGE
)
if len(eyes) == 0:
print('no eyes!!!')
else:
print('eyes!!!')
frame_tmp = cv2.resize(frame_tmp, (400, 400), interpolation=cv2.INTER_LINEAR)
cv2.imshow('Face Recognition', frame_tmp)
waitkey = cv2.waitKey(1)
if waitkey == ord('q') or waitkey == ord('Q'):
cv2.destroyAllWindows()
break