-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSummary.py
115 lines (91 loc) · 3.18 KB
/
Summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env python
# coding: utf-8
import nltk
from nltk.corpus import stopwords
from nltk.cluster.util import cosine_distance
import numpy as np
import networkx as nx
import math
import joblib
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LogisticRegression
def read_article(a):
if a[-1]!='.':
a+='.'
article = a.split(".")
sentences = []
for sentence in article:
sentences.append(sentence.replace("[^a-zA-Z]", " ").split(" "))
sentences.pop()
n=len(sentences)
return sentences,n
def sentence_similarity(sent1, sent2, stopwords=None):
if stopwords is None:
stopwords = []
sent1 = [w.lower() for w in sent1]
sent2 = [w.lower() for w in sent2]
all_words = list(set(sent1 + sent2))
vector1 = [0] * len(all_words)
vector2 = [0] * len(all_words)
# build the vector for the first sentence
for w in sent1:
if w in stopwords:
continue
vector1[all_words.index(w)] += 1
# build the vector for the second sentence
for w in sent2:
if w in stopwords:
continue
vector2[all_words.index(w)] += 1
return 1 - cosine_distance(vector1, vector2)
def build_similarity_matrix(sentences, stop_words):
# Create an empty similarity matrix
similarity_matrix = np.zeros((len(sentences), len(sentences)))
for idx1 in range(len(sentences)):
for idx2 in range(len(sentences)):
if idx1 == idx2: # ignore if both are same sentences
continue
similarity_matrix[idx1][idx2] = sentence_similarity(sentences[idx1], sentences[idx2], stop_words)
return similarity_matrix
def generate_summary(file_name):
nltk.download("stopwords")
stop_words = stopwords.words('english')
summarize_text = []
# Step 1 - Read text anc split it
sentences,n = read_article(file_name)
top_n=int(n/2)+1
# Step 2 - Generate Similary Martix across sentences
sentence_similarity_martix = build_similarity_matrix(sentences, stop_words)
# Step 3 - Rank sentences in similarity martix
sentence_similarity_graph = nx.from_numpy_array(sentence_similarity_martix)
scores = nx.pagerank(sentence_similarity_graph)
# Step 4 - Sort the rank and pick top sentences
ranked_sentence = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
for i in range(top_n):
summarize_text.append(" ".join(ranked_sentence[i][1]))
return summarize_text
def generate_legal(Sentence_list):
Sentence_list_legal=[]
for i in Sentence_list:
if legal(i):
Sentence_list_legal+=[i]
if Sentence_list_legal==[]:
Sentence_list_legal+=['The Document Is Safe']
return Sentence_list_legal
def Format(Sum):
string=''
count=1
for i in Sum:
w=str(count)+'.'+i+'.<br/><br/>'
string+=w
count+=1
return string
def legal(sentence):
with open('./asset/vectorizer.joblib','rb') as f:
encoder=joblib.load(f)
with open('./asset/classifier.joblib','rb') as f:
model=joblib.load(f)
t=encoder.transform([sentence])
if int(model.predict(t))==1:
return True
return False