-
Notifications
You must be signed in to change notification settings - Fork 1
/
QAandFA.lyx
1016 lines (734 loc) · 20.1 KB
/
QAandFA.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 1.6.5 created this file. For more info see http://www.lyx.org/
\lyxformat 345
\begin_document
\begin_header
\textclass article
\use_default_options true
\language english
\inputencoding auto
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize a4paper
\use_geometry true
\use_amsmath 1
\use_esint 1
\cite_engine basic
\use_bibtopic false
\paperorientation portrait
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\papercolumns 1
\papersides 2
\paperpagestyle plain
\tracking_changes false
\output_changes false
\author ""
\author ""
\end_header
\begin_body
\begin_layout Title
Spin propagator and diffusion crossings
\end_layout
\begin_layout Section
Overview
\end_layout
\begin_layout Standard
The idea that only the orientation information from the diffusion signal
is adequate for accurate tractography generation is under question.
We propose a new method based on the work of Yeh.
et.
al
\begin_inset CommandInset citation
LatexCommand cite
key "Yeh2010"
\end_inset
who extends the current derivations for diffusion signal reconstruction
and provides both scalar and vector metrics that facilitate the understanding
of the underlying signal and its use for fast and accurate tractography.
The key issue is the reentrance of the spin density as an important part
of the diffusion voxel reconstruction.
The spin density together with the diffusion propagator give rise to the
spin propagator.
From the spin propagator both old metrics like FA and MD can be calculated
non-parametricly along with new metrics as QA and XA (FA for X) which give
higher insight on the underlying signal in a model free fashion.
\end_layout
\begin_layout Section
From k-space to q-space
\end_layout
\begin_layout Standard
The starting point is the classical formulation seen in eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:kq"
\end_inset
of joint k-space and q-space imaging (Calaghan 8.3.1 p.
438)
\begin_inset CommandInset citation
LatexCommand cite
key "Callaghan1991OUP"
\end_inset
using the narrow pulse gradient spin echo (PGSE) sequence of Tanner and
Stejskal
\end_layout
\begin_layout Standard
\align center
\begin_inset Formula \begin{eqnarray}
\mathit{\mathcal{RF}}(\mathbf{k},\mathbf{q}) & = & \int\rho(\mathbf{r})\exp(j2\pi\mathbf{k}\cdot\mathbf{r})\int p_{\Delta}(\mathbf{r},\mathbf{R})\exp(j2\pi\mathbf{q}\cdot\mathbf{R})d\mathbf{R}d\mathbf{r}\label{eq:kq}\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
Here
\begin_inset Formula $RF$
\end_inset
is the complex RF signal measured at spatial wave number
\begin_inset Formula $\mathbf{k}$
\end_inset
and magnetic gradient wave number
\begin_inset Formula $\mathbf{q}$
\end_inset
,
\begin_inset Formula $\rho$
\end_inset
is the local spin density (number of protons per unit volume contributing
to the RF signal),
\begin_inset Formula $\Delta$
\end_inset
is the diffusion time scale of the sequence,
\begin_inset Formula $p_{\Delta}$
\end_inset
is the average diffusion propagator (transition probability distribution),
\series bold
\begin_inset Formula $\mathbf{r}$
\end_inset
\series default
is the voxel coordinate and
\begin_inset Formula $\mathbf{R}$
\end_inset
is the diffusion displacement.
\end_layout
\begin_layout Standard
The k-space reconstruction gives us diffusion weighted image data
\begin_inset Formula $S$
\end_inset
which reveal the average propagator
\begin_inset Formula $p_{\Delta}$
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Wedeen"
\end_inset
of each voxel [
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:W"
\end_inset
]
\end_layout
\begin_layout Standard
\align center
\begin_inset Formula \begin{eqnarray}
S(\mathbf{r},\mathbf{q}) & = & \int\rho(\mathbf{r})p_{\Delta}(\mathbf{r},\mathbf{R})\exp(j2\pi\mathbf{q}\cdot\mathbf{R})d\mathbf{R}\label{eq:W}\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
In order to represent the average propagator in the scale of spin quantity
Yeh et.al.
introduced a
\emph on
spin density function
\emph default
which is estimated by scaling the average propagator
\begin_inset Formula $p_{\Delta}$
\end_inset
with the spin density
\begin_inset Formula $\rho$
\end_inset
, i.e.
\begin_inset Formula $Q(\mathbf{r},\mathbf{R})=\rho(\mathbf{r})p_{\Delta}(\mathbf{r},\mathbf{R})$
\end_inset
.
\end_layout
\begin_layout Standard
\align center
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\lang british
\begin_inset Formula \begin{eqnarray}
S(\mathbf{r},\mathbf{q}) & = & \int Q(\mathbf{r},\mathbf{R})\exp(j2\pi\mathbf{q}\cdot\mathbf{R})d\mathbf{R}\label{eq:W2Q}\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
We can apply the inverse fourier transform in eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:W2Q"
\end_inset
and obtain
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{eqnarray}
Q(\mathbf{r},\mathbf{R}) & = & \int S(\mathbf{r},\mathbf{q})exp(-j2\pi\mathbf{q}\cdot\mathbf{R})d\mathbf{q}\label{eq:Q2S_complex}\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
Because
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\lang british
\begin_inset Formula $Q(\mathbf{r},\mathbf{R})$
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\noun default
\color inherit
\lang english
is real,
\begin_inset Formula $S(\mathbf{r},\mathbf{q})$
\end_inset
is symmetric (even) in q-space, i.e.
\begin_inset Formula $S(\mathbf{r},\mathbf{q})=S(\mathbf{r},-\mathbf{q})$
\end_inset
we can use directly the fourier cosine transform
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{eqnarray}
Q(\mathbf{r},\mathbf{R}) & = & \int S(\mathbf{r},\mathbf{q})cos(2\pi\mathbf{q}\cdot\mathbf{R})d\mathbf{q}\label{eq:cosine_transform}\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
and obtain the spin distribution function
\begin_inset Formula $\psi$
\end_inset
from an unweighted trancated radial projection
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{eqnarray}
\psi_{Q}(\mathbf{r},\mathbf{\hat{u}}) & = & \intop_{0}^{L_{\Delta}}Q(\mathbf{r},L\mathbf{\hat{u}})dL\label{eq:SDF}\end{eqnarray}
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
!!! add here equations 5 & 6 from Frank's paper and their matrix form
\end_layout
\end_inset
\end_layout
\begin_layout Standard
where
\begin_inset Formula $L_{\Delta}$
\end_inset
is the diffusion sampling length.
This parameter acts like a smoothing factor.
The highest the
\begin_inset Formula $L_{\Delta}$
\end_inset
more detailed the SDF will be but also more noisy.
Typical values for the diffusion sampling length are
\begin_inset Formula $[1.1-1.3]$
\end_inset
.
Usually
\begin_inset Formula $L_{\Delta}=1.2$
\end_inset
is a good ballance between noisy reconstruction and over-smoothing.
\end_layout
\begin_layout Standard
Assuming that the diffusion voxel can be represented by a single tensor
model eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:W"
\end_inset
can be written in the form
\end_layout
\begin_layout Standard
\align center
\begin_inset Formula \begin{eqnarray}
S(\mathbf{q}) & = & S_{0}exp(-b\mathbf{q}^{T}D\mathbf{q})\label{eq:Tensor}\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
where
\begin_inset Formula $S_{0}$
\end_inset
is the image when b-value is equal to 0,
\begin_inset Formula $b$
\end_inset
is the b-value for a specific direction and
\begin_inset Formula $D$
\end_inset
is a
\begin_inset Formula $3x3$
\end_inset
matrix, known as the diffusion tensor.
Then from eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:Q2S_complex"
\end_inset
and
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:Tensor"
\end_inset
the Fourier transform of
\begin_inset Formula $S$
\end_inset
is equal to
\end_layout
\begin_layout Standard
\align center
\begin_inset Formula \begin{eqnarray}
Q(\mathbf{R}) & = & \int S_{0}\exp(-b\mathbf{q}^{T}D\mathbf{q})\exp(-j2\pi\mathbf{q}\cdot\mathbf{R})d\mathbf{q}\label{eq:FourierW}\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
The same equation in its triple integral form can be written as
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{eqnarray}
Q(R) & =S_{0} & \iiint\exp(-b\sum_{i=1}^{3}q_{i}^{2}\lambda_{i}-j2\pi\sum_{i=1}^{3}q_{i}R_{i})dq_{1}dq_{2}dq_{3}\nonumber \\
& =S_{0} & \iiint\prod_{i=1}^{3}exp(-bq_{i}^{2}\lambda_{i}-j2\pi q_{i}R_{i})dq_{1}dq_{2}dq_{3}\nonumber \\
& =S_{0} & \prod_{i=1}^{3}\int\exp(-bq_{i}^{2}\lambda_{i}-j2\pi q_{i}R_{i})dq_{i}\nonumber \\
& =S_{0} & \prod_{i=1}^{3}\int\exp(-b\lambda_{i}[q_{i}^{2}+\frac{j2\pi R_{i}}{b\lambda_{i}}q_{i}])dq_{i}\nonumber \\
& =S_{0} & \prod_{i=1}^{3}\int\exp\{-b\lambda_{i}[(q_{i}+\frac{j\pi R_{i}}{b\lambda_{i}})^{2}+\frac{\pi^{2}R_{i}^{2}}{b^{2}\lambda_{i}^{2}}]\}\nonumber \\
& =S_{0} & \prod_{i=1}^{3}\int\exp\{-b\lambda_{i}(q_{i}+\frac{j\pi R_{i}}{b\lambda_{i}})^{2}\}exp\{-\frac{\pi^{2}R_{i}^{2}}{b\lambda_{i}}\}\label{eq:NextQ}\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
In that stage we could try to make use of the formula
\begin_inset Formula $\int\frac{1}{\sqrt{2\pi\sigma^{2}}}\exp(-\frac{(x-\mu)^{2}}{2\sigma^{2}})dx=1$
\end_inset
.
Now we can see that
\begin_inset Formula $b\lambda_{i}=1/2\sigma^{2}$
\end_inset
and
\begin_inset Formula $\mu$
\end_inset
corresponds to
\begin_inset Formula $\mu=-jR_{i}/b\lambda_{i}$
\end_inset
.
Therefore, eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:NextQ"
\end_inset
can now be written as
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{eqnarray}
Q(\mathbf{R}) & =S_{0} & \prod_{i=1}^{3}\sqrt{\frac{\pi}{b\lambda_{i}}}\exp(-\frac{\pi^{2}R_{i}^{2}}{b\lambda_{i}})\nonumber \\
& =S_{0} & \left(\frac{\pi}{b}\right)^{3/2}\frac{1}{\sqrt{\prod_{i=1}^{3}\lambda_{i}}}\exp(-\frac{\,\,\pi^{2}}{b}\mathbf{R}^{T}D^{-1}\mathbf{R})\label{eq:TensorQ}\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
where
\begin_inset Formula $D$
\end_inset
is the diffusion tensor.
We can replace the displacement vector
\begin_inset Formula $\mathbf{R}$
\end_inset
with a scalar value
\begin_inset Formula $L$
\end_inset
and a unit vertor
\begin_inset Formula $\hat{u}$
\end_inset
i.e.
\begin_inset Formula $\mathbf{R}=L\hat{\mathbf{u}}$
\end_inset
and from eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:TensorQ"
\end_inset
we can replace
\begin_inset Formula $\frac{2\pi^{2}}{b}\mathbf{\hat{u}}^{T}D^{-1}\mathbf{\hat{u}}$
\end_inset
with
\begin_inset Formula $k$
\end_inset
and
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\lang british
\begin_inset Formula $S_{0}\left(\frac{\pi}{b}\right)^{3/2}\frac{1}{\lambda_{1}\lambda_{2}\lambda_{3}}$
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\noun default
\color inherit
\lang english
with
\begin_inset Formula $\alpha$
\end_inset
.
Using that last change of variables we can now write
\begin_inset Formula \begin{eqnarray}
\psi_{Q}(\mathbf{r},\mathbf{\hat{u}}) & = & \intop_{0}^{L_{\Delta}}Q(\mathbf{r},L\mathbf{\hat{u}})dL\nonumber \\
& = & \alpha\intop_{0}^{L_{\Delta}}\exp(-L^{2}\frac{k}{2})dL\label{eq:TensorQ2}\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
Setting
\begin_inset Formula $m=\sqrt{k}L$
\end_inset
and using the derivation for the error function eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:TensorQ2"
\end_inset
illustrates the remarkable result that we can calculate analyticaly the
spin odf for gaussian diffusion using the cumulative distribution function
\begin_inset Formula $CDF$
\end_inset
.
\begin_inset Newline newline
\end_inset
\begin_inset Formula \begin{eqnarray}
\psi_{Q}(\mathbf{\hat{u}}) & = & \frac{\alpha}{\sqrt{k}}\intop_{0}^{\sqrt{k}L_{\Delta}}e^{-m^{2}/2}dm\\
& = & \alpha\sqrt{\frac{2\pi}{k}}\left[CDF(\sqrt{k}L_{\Delta})-\frac{1}{2}\right]\label{eq:spinodf_cdf}\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
This can be used as a check to compare the approximated/sampled spin odf
that is derived in
\begin_inset CommandInset citation
LatexCommand cite
key "Yeh2010"
\end_inset
with eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:spinodf_cdf"
\end_inset
for the case of gaussian diffusion.
\end_layout
\begin_layout Standard
What is also very interesting is to try to derive what the normalization
factor should be for the spin odf in eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:TensorQ2"
\end_inset
.
Because calculating a spherical intergral from eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:spinodf_cdf"
\end_inset
seems at the moment very complicated we first work with the simpler gaussian
diffusion ODF derived by Tuch
\begin_inset CommandInset citation
LatexCommand cite
key "Tuch2004"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
\psi_{p_{\Delta}}=\frac{1}{Z}\sqrt{\frac{\pi\tau}{\mathbf{u}^{T}D^{-1}\mathbf{u}}}\label{eq:tuchs_gaussian_odf}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{eqnarray}
\frac{Z}{\sqrt{\pi\tau}} & = & \iintop_{S^{2}}(\mathbf{u}^{T}D^{-1}\mathbf{u})^{-\frac{1}{2}}d\mathbf{u}\label{eq:spherical_integral_Z}\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
Lets now define
\begin_inset Formula $f_{D}(\mathbf{u})=(\mathbf{u}^{T}D^{-1}\mathbf{u})^{-\frac{1}{2}}$
\end_inset
.
From
\begin_inset CommandInset citation
LatexCommand cite
key "olver2010nist"
\end_inset
(19.31.2) we know that we can calculate the following integral on the entire
space (eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:hole_space_known"
\end_inset
).
By expanding it in polar form we can find surface integral needed in eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:spherical_integral_Z"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{eqnarray}
MHG & = & \iiint f_{D}(x)e^{-|x|^{2}}dx\label{eq:hole_space_known}\\
& = & \intop_{0}^{\infty}\left[\iint f_{D}(ru)du\right]e^{-r^{2}}r^{2}dr,\qquad x=ru\:(polar)\label{eq:hole_space_polar}\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
However we know that
\begin_inset Formula $f_{D}(r\mathbf{u})=((r\mathbf{u})^{T}D^{-1}(r\mathbf{u}))^{-\frac{1}{2}}=r^{-1}(\mathbf{u}^{T}D^{-1}\mathbf{u})^{-\frac{1}{2}}$
\end_inset
therefore
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{eqnarray*}
MHG & = & \intop_{0}^{\infty}\left[\iint f_{D}(u)du\right]e^{-r^{2}}rdr\\
& = & \iint f_{D}(u)du\intop_{0}^{\infty}re^{-r^{2}}dr\\
& = & \frac{1}{2}\iint f_{D}(u)du\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
Consequently,
\begin_inset Formula $\frac{Z}{\sqrt{\pi\tau}}=2MHG$
\end_inset
where MHG is the multivariate hypergeometric function with
\begin_inset Formula $\mu=-\frac{1}{2}$
\end_inset
,
\begin_inset Formula $B=I$
\end_inset
,
\begin_inset Formula $n=3$
\end_inset
and
\begin_inset Formula $\lambda_{1},\lambda_{2},\lambda_{3}$
\end_inset
the eigenvalues of
\begin_inset Formula $A$
\end_inset
derived from
\begin_inset CommandInset citation
LatexCommand cite
key "olver2010nist"
\end_inset
(19.31.2) & (19.16.9).
Therefore,
\begin_inset Formula \begin{eqnarray*}
\frac{Z}{\sqrt{\pi\tau}} & = & 2MHG\\
& = & \frac{2\pi^{\frac{3}{2}}\Gamma(1)}{\sqrt{det(I)}\Gamma(\frac{3}{2})}R_{-\frac{1}{2}}(\frac{1}{2},\frac{1}{2},\frac{1}{2};\lambda_{1},\lambda_{2},\lambda_{3})\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
and
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\begin_inset Formula $R_{-\frac{1}{2}}=\frac{1}{2}\intop_{0}^{\infty}t^{0}(t+\lambda_{1})^{-\frac{1}{2}}(t+\lambda_{2})^{-\frac{1}{2}}(t+\lambda_{3})^{-\frac{1}{2}}dt$
\end_inset
with
\begin_inset Formula $\alpha=\frac{1}{2}$
\end_inset
and
\begin_inset Formula $\alpha'=1$
\end_inset
.
\end_layout
\begin_layout Standard
Given
\begin_inset Formula $\lambda_{1},\lambda_{2},\lambda_{3}$
\end_inset
we can integrate numerically or even possibly analytically.
For the isotropic case the integral simplifies to
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\begin_inset Formula $\frac{1}{2}\intop_{0}^{\infty}t^{0}(t+\lambda)^{-\frac{3}{2}}dt=\frac{1}{\sqrt{\lambda}}$
\end_inset
and for the cylindrical case (
\begin_inset Formula $\lambda_{2}=\lambda_{3}$
\end_inset
) to
\begin_inset Formula $\frac{1}{2}\intop_{0}^{\infty}(t+\lambda_{1})^{-\frac{1}{2}}(t+\lambda_{2})^{-1}dt$
\end_inset
.
\end_layout
\begin_layout Section
From the spin density ODF to FA
\end_layout
\begin_layout Standard
As
\begin_inset Formula $FA(\lambda_{1},\lambda_{2},\lambda_{3})$
\end_inset
is a function of the eigen-values of the diffusion tensor model we could
try to approximate directly FA from the sODF by finding
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\begin_inset Formula $\lambda_{1},\lambda_{2},\lambda_{3}$
\end_inset
through the global maximum , equatorial maximum and inferior maximum of
the sODF.
\end_layout
\begin_layout Standard
\lang british
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\begin_inset Graphics
filename Ldelta1_Ldelta_10.png
scale 80
rotateOrigin center
\end_inset
\end_layout
\begin_layout Plain Layout
\lang british
\begin_inset Caption
\begin_layout Plain Layout
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
import scipy.stats.distributions as ssd
\begin_inset Newline newline
\end_inset
used ssd.norm.cdf
\end_layout
\end_inset
\begin_inset Newline newline
\end_inset
if k=0 then cdf = NaN but
\begin_inset Formula $\lim_{k\rightarrow0}\backsimeq0.398$
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Section
What is QA then?
\end_layout
\begin_layout Standard
QA is defined by the sODF value at the resolved fiber orientation
\begin_inset Formula $\hat{u}$
\end_inset
(local maximum) minus the isotropic component (global minimum) for the
voxel.
QA can be also very easily normalized by the maximum sODF value of all
voxels.
\end_layout
\begin_layout Section
Appendix
\end_layout
\begin_layout Subsection
The cosine transform
\end_layout
\begin_layout Standard
\begin_inset Formula $\int_{0}^{\infty}\cos(st)g(t)dt$
\end_inset
where
\begin_inset Formula $g(t)$
\end_inset
defined on
\begin_inset Formula $[t,\infty)$
\end_inset
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $f(t)$
\end_inset
be an even function
\begin_inset Formula $f(t)=f(-t)$
\end_inset
defined for
\begin_inset Formula $-\infty<t<\infty$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{eqnarray*}
F(s) & = & \int_{-\infty}^{\infty}f(t)e^{its}dt\\
& = & \int_{0}^{\infty}f(t)e^{its}dt+\int_{-\infty}^{0}f(t)e^{its}dt\\
& = & \int_{0}^{\infty}f(t)e^{its}dt-\int_{-\infty}^{0}f(-t)e^{-its}dt\\
& = & \int_{0}^{\infty}f(t)e^{its}dt+\int_{0}^{\infty}f(t)e^{-its}dt\\
& = & \int_{0}^{\infty}f(t)[e^{its}+e^{-its}]dt\\
& = & \int_{0}^{\infty}f(t)[cos(its)+isin(its)+cos(its)-isin(its)]dt\\
& = & 2\int_{0}^{\infty}f(t)cos(st)dt\end{eqnarray*}
\end_inset
In the third row above we replace
\begin_inset Formula $t\rightarrow-t$
\end_inset
\end_layout
\begin_layout Standard
If you want to compute the integral in the hole space because of symmetry
you have
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\begin_inset Formula $F(s)=\int_{-\infty}^{\infty}f(t)cos(st)dt$
\end_inset
\end_layout