-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmanine.py
145 lines (110 loc) · 3.71 KB
/
manine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""
OUTDATED, replaced by `single_filter_analysis.py`.
Do the fingerplot of an LNGS wav.
"""
import numpy as np
from matplotlib import pyplot as plt
import readwav
import fighelp
import integrate
filename = 'darksidehd/nuvhd_lf_3x_tile57_77K_64V_6VoV_1.wav'
data = readwav.readwav(filename, mmap=False)
print('computing...')
start, value, baseline = integrate.integrate(data, bslen=200)
# Identify events with out-of-trigger signals.
baseline_zone = data[:, 0, :8900]
ignore = np.any((0 <= baseline_zone) & (baseline_zone < 700), axis=-1)
print(f'ignoring {np.sum(ignore)} events with values < 700 in baseline zone')
# Boundaries for peaks in (baseline - value) histogram
# Written down by looking at the plot
window = np.array([
-15,
12,
37,
62,
86,
110,
137,
159,
183,
207,
232,
256,
281,
297
])
corr_value = (baseline - value)[~ignore]
center, width = np.empty((2, len(window) - 1))
for i in range(len(window) - 1):
selection = (window[i] <= corr_value) & (corr_value < window[i + 1])
values = corr_value[selection]
center[i] = np.median(values)
width[i] = np.diff(np.quantile(values, [0.50 - 0.68/2, 0.50 + 0.68/2]))[0] / 2
fig = fighelp.figwithsize([6.4, 4.8], resetfigcount=True)
ax = fig.subplots(1, 1)
ax.set_title('Histograms of signals and baselines')
ax.set_xlabel('ADC scale')
ax.set_ylabel('Bin count')
ax.hist(value[~ignore], bins=1000, histtype='step', label='signal')
ax.hist(baseline[~ignore], bins='auto', histtype='step', label='baseline')
ax.legend(loc='best')
fighelp.saveaspng(fig)
fig = fighelp.figwithsize([7.27, 5.73])
ax = fig.subplots(1, 1)
ax.set_title('Histogram of baseline-corrected and inverted signal')
ax.set_xlabel('ADC scale')
ax.set_ylabel('Occurences')
corr_value = baseline - value
ax.hist(corr_value[~ignore], bins=1000, histtype='step', zorder=10, label='histogram')
kwvline = dict(linestyle='--', color='black', linewidth=1, label='median')
kwvspan = dict(color='lightgray', label='symmetrized 68 % interquantile range')
for i in range(len(center)):
ax.axvline(center[i], **kwvline)
ax.axvspan(center[i] - width[i], center[i] + width[i], **kwvspan)
kwvline.pop('label', None)
kwvspan.pop('label', None)
kwvline = dict(linestyle=':', color='gray', label='boundaries (handpicked)')
for i in range(len(window)):
ax.axvline(window[i], **kwvline)
kwvline.pop('label', None)
ax.set_xlim(-15, 315)
ax.legend(loc='upper right')
fighelp.saveaspng(fig)
fig = fighelp.figwithsize([6.4, 4.8])
ax = fig.subplots(2, 1, sharex=True)
ax[0].set_title('Center and width of peaks in signal histogram')
ax[0].set_ylabel('median')
ax[1].set_ylabel('68 % half interquantile range')
ax[1].set_xlabel('Peak number (number of photoelectrons)')
ax[0].plot(center, '.--')
ax[1].plot(width, '.--')
for a in ax:
a.grid()
fighelp.saveaspng(fig)
fig = fighelp.figwithsize([6.4, 4.8])
ax = fig.subplots(2, 1, sharex=True)
ax[0].set_title('Baseline < 800')
ax[1].set_title('Corresponding triggers')
ax[1].set_xlabel('Event sample number')
ax[0].set_ylabel('ADC value')
ax[1].set_ylabel('ADC value')
for i in np.argwhere(baseline < 800).reshape(-1):
ax[0].plot(data[i, 0], ',')
ax[1].plot(data[i, 1], ',')
ax[0].set_ylim(-50, 1050)
ax[1].set_ylim(-50, 1050)
fighelp.saveaspng(fig)
fig = fighelp.figwithsize([6.4, 4.8])
ax = fig.subplots(2, 1, sharex=True)
ax[0].set_title('Signal 1000 samples average < 400')
ax[1].set_title('Corresponding triggers')
ax[1].set_xlabel('Event sample number')
ax[0].set_ylabel('ADC value')
ax[1].set_ylabel('ADC value')
for i in np.argwhere(value < 400).reshape(-1):
ax[0].plot(data[i, 0], ',')
ax[1].plot(data[i, 1], ',')
ax[0].set_ylim(-50, 1050)
ax[1].set_ylim(-50, 1050)
fighelp.saveaspng(fig)
plt.show()